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Introduction
Adversarial Examples are imperceptible from legitimate ones by
adding tiny perturbations, but lead to incorrect model prediction.

Transferability: adversarial examples generated for one model can
still fool other models, that enables black-box attacks in the real-
world applications without any knowledge of target model.

Background: existing attacks (e.g. PGD, CW, etc.) have exhibited
great effectiveness, but with low transferability.

Methodology
Existing input transformations are effective to improve the transfer-
ability, but they are all applied on single input image. Could we
further improve the transferability by incorporating the informa-
tion from other categories?
Mixup improves the model generalization by interpolating two ran-
domly sampled samples (x, y) and (x′, y′) with λ ∈ [0, 1] as follows:

x̃ = λ · x+ (1− λ) · x′, ỹ = λ · y + (1− λ) · y′. (1)

Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens
MI-FGSM 100.0 43.6 42.4 35.7 13.1 12.8 6.2

Mixup 71.8 44.2 41.1 39.0 13.5 13.4 7.2

Table 1: Evaluations on MI-FGSM and Mixup transformation.

However, directly applying mixup for gradient calculation improves
the transferability of crafted adversaries slightly but degrades the
attack performance significantly under white-box setting.
To utilize the information of images from other category without
harming the white-box attack performance, we propose admix op-
eration that admixes two images in a master and slave manner.

x̃ = γ · x+ η′ · x′ = γ · (x+ η · x′). (2)

We further propose an Admix attack method to improve the attack
transferability, which calculates the average gradient on a set of
admixed images {x̃} of the input x by changing the value of γ or
picking the add-in image x′ from different categories in Eq. (2).

ḡt+1 =
1

m1 ·m2

∑
x′∈X′

m1−1∑
i=0

∇xadv
t
J(γi · (xadvt + η · x′), y; θ), (3)

Both admix and mixup generate a mixed image from an image pair,
x and x′. Here we summarize their differences as follows:

• Different goal: Mixup aims to improve the model generalization
while admix aims to generate more transferable adversaries.

• Different Strategy: Mixup treats x and x′ equally and also mixes
the label while admix treats x as the primary component and com-
bines a small portion of x′, and maintains the label of x.

• Different interpolated image: Mixup linearly interpolates x and
x′ while admix does not have such constraint, leading to more
diversed transformed images.

Algorithm

Algorithm 1 The Admix Attack Algorithm

Input: A classifier f with loss function J and a benign example x with
ground-truth label y

Input: The maximum perturbation ε, number of iterations T and decay
factor µ

Input: The number of admixed copies m1 and sampled images m2, and
the strength of sampled image η

Output: An adversarial example xadv ∈ Bε(x)
1: α = ε/T ; g0 = 0; ḡ0 = 0; xadv0 = x
2: for t = 0→ T − 1 do:
3: Randomly sample a set X ′ of m2 images from another category
4: Calculate the average gradient ḡt+1 by Eq. (3)
5: Update the enhanced momentum gt:

gt+1 = µ · gt +
ḡt+1

‖ḡt+1‖1

6: Update xadvt+1 by applying the gradient sign:

xadvt+1 = xadvt + α · sign(gt+1)

7: end for
8: return xadv = xadvT .

Experiments
Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3

DIM 99.0* 64.3 60.9 53.2 19.9 18.3 9.3
TIM 100.0* 48.8 43.6 39.5 24.8 21.3 13.2
SIM 100.0* 69.4 67.3 62.7 32.5 30.7 17.3

Admix 100.0* 82.6 80.9 75.2 39.0 39.2 19.2

Inc-v4

DIM 72.9 97.4* 65.1 56.5 20.2 21.1 11.6
TIM 58.6 99.6* 46.5 42.3 26.2 23.4 17.2
SIM 80.6 99.6* 74.2 68.8 47.8 44.8 29.1

Admix 87.8 99.4* 83.2 78.0 55.9 50.4 33.7

IncRes-v2

DIM 70.1 63.4 93.5* 58.7 30.9 23.9 17.7
TIM 62.2 55.4 97.4* 50.5 32.8 27.6 23.3
SIM 84.7 81.1 99.0* 76.4 56.3 48.3 42.8

Admix 89.9 87.5 99.1* 81.9 64.2 56.7 50.0

Res-101

DIM 75.8 69.5 70.0 98.0* 35.7 31.6 19.9
TIM 59.3 52.1 51.8 99.3* 35.4 31.3 23.1
SIM 75.2 68.9 69.0 99.7* 43.7 38.5 26.3

Admix 85.4 80.8 79.6 99.7* 51.0 45.3 30.9

Table 2: Evaluations on various single input transformation based attacks.
Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3 SI-DIM 98.9* 85.0 81.3 76.3 48.0 45.1 24.9
Admix-DIM 99.8* 90.5 87.7 83.5 52.2 49.9 28.6

Inc-v4 SI-DIM 89.3 98.8* 85.6 79.9 58.4 55.2 39.3
Admix-DIM 93.0 99.2* 89.7 85.2 62.4 60.3 39.7

IncRes-v2 SI-DIM 87.9 85.1 97.5* 82.9 66.0 59.3 52.2
Admix-DIM 90.2 88.4 98.0* 85.8 70.5 63.7 55.3

Res-101 SI-DIM 87.9 83.4 84.0 98.6* 63.5 57.5 42.0
Admix-DIM 91.9 89.0 89.6 99.8* 69.7 62.3 46.6

Table 3: Evaluations on the attacks integrated with DIM.
Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3 SI-TIM 100.0* 71.8 68.6 62.2 48.2 47.4 31.3
Admix-TIM 100.0* 83.9 80.4 74.4 59.1 57.9 39.2

Inc-v4 SI-TIM 78.2 99.6* 71.9 66.1 58.6 55.4 45.1
Admix-TIM 87.4 99.7* 82.3 77.0 68.1 65.3 53.1

IncRes-v2 SI-TIM 84.5 82.2 98.8* 77.4 71.6 64.7 61.0
Admix-TIM 90.2 88.2 98.6* 83.9 78.4 73.6 70.0

Res-101 SI-TIM 74.2 69.9 70.2 99.8* 59.5 54.5 42.8
Admix-TIM 83.2 78.9 80.7 99.7* 67.0 62.5 52.8

Table 4: Evaluations on the attacks integrated with TIM.

Experiments
Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3 SI-TI-DIM 99.1* 83.6 80.8 76.7 65.2 63.3 46.5
Admix-TI-DIM 99.9* 89.0 87.0 83.1 72.2 71.1 52.4

Inc-v4 SI-TI-DIM 87.9 98.7* 83.0 77.7 72.4 68.2 57.5
Admix-TI-DIM 90.4 99.0* 87.3 82.0 75.3 71.9 61.6

IncRes-v2 SI-TI-DIM 88.8 86.8 97.8* 83.9 78.7 74.2 72.3
Admix-TI-DIM 90.1 89.6 97.7* 85.9 82.0 78.0 76.3

Res-101 SI-TI-DIM 84.7 82.2 84.8 99.0* 75.8 73.5 63.4
Admix-TI-DIM 91.0 87.7 89.2 99.9* 81.1 77.4 70.1

Table 5: Evaluations on the attacks integrated with TI-DIM.
Attack Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

DIM 99.4* 97.4* 94.9* 99.8* 58.1 51.1 34.9
TIM 99.8* 97.9* 95.2* 99.8* 62.2 56.8 48.0
SIM 99.9* 99.3* 98.3* 100.0* 78.8 73.9 59.5

Admix 100.0* 99.6* 99.0* 100.0* 85.5 80.9 67.8
SI-DIM 99.7* 98.9* 97.7* 99.9* 85.2 83.3 71.3

Admix-DIM 99.7* 99.5* 98.9* 100.0* 89.3 87.8 79.0
SI-TIM 99.7* 99.0* 97.6* 100.0* 87.9 85.2 80.4

Admix-TIM 99.7* 99.1* 98.1* 100.0* 91.8 89.7 85.8
SI-TI-DIM 99.6* 98.9* 97.8* 99.7* 91.1 90.3 86.8

Admix-TI-DIM 99.7* 98.9* 98.3* 100.0* 93.9 92.3 90.0

Table 6: Evaluations in ensemble model setting.
Attack HGD R&P NIPS-r3 Bit-Red FD JPEG RS ARS NRP Average

SI-TI-DIM 91.4 88.0 90.0 75.7 88.0 93.2 69.2 46.4 77.1 79.9
Admix-TI-DIM 93.7 90.3 92.4 80.1 91.9 95.4 74.9 51.4 80.7 83.3

Table 7: Evaluations on Defense models.
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(b) Admix-TI-DIM
Figure 1: Evaluations for various
number of sampled image, m2.
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(b) Admix-TI-DIM
Figure 2: Evaluations for various
strength of sampled image, η.
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Figure 3: Evaluations on Mixup,
Mixupwlm, Admixlm and Admix
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Figure 4: Evaluations on SIM, Cut-
mix and Admix.

Conclusion
• We propose a novel input transformation based at-

tack, Admix, utilizing the information of images
from other category to enhance the transferability.

• Our method is geneally applicable to other in-
put transformations (i.e. DIM, TIM, SIM etc.) and
gradient-based attacks.

• Experiments show our method could significantly enhance the
transferability of various attacks.


