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Adversarial Example

Adversarial Example for Image Classification [4].

Prediction Confidence Texts

Positive 99.7%
This is a unique masterpiece made by the best director ever lived in the
ussr. He knows the art of film making and can use it very well. If you
find this movie, buy or copy it!

Negative 86.2%
This is a sole masterpiece made by the best director ever lived in the
ussr. He knows the art of film making and can use it very well. If you
find this movie, buy or copy it!

Adversarial Example for Text Classification [14].
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Definition of Adversarial Examples

Image Adversarial Examples
Given an image classifier f and a constant n , the image adversarial
example for input x can be defined as finding an example xadv which
satisfies ‖x − xadv ‖p< n and f(xadv) 6= f(x) = y, where ‖·‖p denotes ℓp
norm and y is the ground true label.

Textual Adversarial Examples
Given a text classifier q and a constant n , the textual adversarial example
for input x can be defined as finding an example xadv which satisfies
R(x, xadv) < n and q(xadv) 6= q(x) = y, where R(a, b) evaluates the
dissimilarity between a and b.

It is hard for textual adversarial attack and defense due to the
lexical, grammatical and semantic constraints.
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Various type of Textual Adversarial Attacks

Based on the metrics to evaluate the dissimilarity of two texts, current
adversarial attacks can be split into three categories.
• Character Level Attack [10, 3, 9]

• Flipping/deleting/inserting characters: A spell checker can fix the
perturbations.

• Sentence Level Attack [5, 13]
• Paraphrasing: Very time consuming.

• Word Level Attack
• Embedding perturbation or adding/removing words [11]: Hurting

semantic consistency and grammatical correctness.
• Synonym substitution [1, 12, 14]: A good and popular way for

generating textural adversarial examples.
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Existing Synonym Substitution Based Adversarial Attack Methods

• Greedy Search Algorithm (GSA) [8] greedily substitutes the
word in the input with the word in the synonym set which
minimizes the confidence.
• Genetic Algorithm (GA) [1] and Improved Genetic Algorithm
(IGA) [14] adopt a population for replacing word with their
synonym which minimizes the confidence.
• Probability Weighted Word Saliency (PWWS) [12] considers
the word saliency as well as the classification confidence for
substituting the word.
• Particle Swarm Optimization (PSO) [16] treats the text as a
particle and substitutes the word with sememe word.

All the above attacks are black-box attack and time-consuming!
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Revisting Adversarial Attack in Image Domain

Fast Gradient Sign Method (FGSM) [4] crafts adversarial example
by adding perturbation in the gradient direction of the loss function
J(x, y; \) as follows:

xadv = x + n · sign(∇xJ(x, y; \)),

where sign(·) denotes the sign function and ∇xJ(x, y; \) is the
gradient of the loss function w.r.t.x.

FGSM is very fast because it only needs one forward propagation and
backpropagation to craft adversarial example.

Could we generate textual adversary by FGSM?
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Why FGSM cannot be Applied in Text Domain?

sign( ) sign( )

denotes the possible inputs for the deep neural model.

Text DomainImage Domain

Even we fortunately find a possible input by FGSM, it might also
violate the lexical, grammatical and semantic constrains.
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Fast Gradient Projection Method (FGPM)
Revisiting Synonym Substitution based Text Attacks

Given a target classifier q and input text x = 〈w1, · · · ,wi , · · · ,wn〉,
there are generally three procedures for crafting the adversarial
example xadv :
• Constructing the Synonym set for each word wi

• Finding the optimal synonym for each word wi

• Determining the substitution order
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Fast Gradient Projection Method (FGPM)
Constructing the Synonym Set

To align with previous works, we construct the synonym set based on
GloVe vector space.
• Measuring semantic similarity: Euclidean distance in GloVe
vector space after counter-fitting which removes antonyms.
• Defining a synonym set for each word wi ∈ x in the embedding
space as follows:

S(wi , X) = {ŵi ∈ D | ‖ŵi − wi ‖2≤ X}, (1)

where X is a hyper-parameter that constrains the maximum
Euclidean distance for synonyms in the embedding space and we
set X = 0.5.
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Fast Gradient Projection Method (FGPM)
Finding the Optimal Synonym for Each Word

For each word wi , we expect to pick a word ŵ∗i ∈ S(wi , X) that earns
the most benefit to the overall substitution process of adversary
generation.

Previous works greedily pick a synonym ŵ∗i ∈ S(wi , X)
that minimizes the classification confidence:

ŵ∗i = argmax
ŵ j

i ∈S(wi , X)

(F(x, y) − F(x̂ j
i , y)),

where x̂ j
i = 〈w1, · · · ,wi−1, ŵ

j
i ,wi+1, · · · ,wn〉. The

selection process is time consuming as picking such a
ŵ∗i needs |S(wi , X)| queries on the model.
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Fast Gradient Projection Method (FGPM)
Finding the Optimal Synonym for Each Word

Based on the local linearity of deep models, we
first calculate the gradient ∇wi J(\, x, y) for each
word wi where J(\, x, y) is the loss function used
for training. Then, we estimate the change by
calculating (ŵ j

i − wi) · ∇wi J(\, x, y) and choose a
synonym with the maximum product value:

ŵ∗i = argmax
ŵ j

i ∈S(wi , X)

(ŵ j
i − wi) · ∇wi J(\, x, y). (2)

Only one query needed for choosing ŵ∗i .
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Fast Gradient Projection Method (FGPM)
Determining the Substitution Order

For each word wi in text x = 〈w1, · · · ,wi , · · · ,wn〉, we use the above
word substitution strategy to choose its optimal substitution synonym
and obtain a candidate set Cs = {ŵ∗1 , · · · , ŵ

∗
i , · · · , ŵ∗n}. Then we pick a

word ŵ∗i ∈ Cs that leads to the biggest value:

ŵ∗ = argmax
ŵ∗i ∈Cs

(ŵ∗i − wi) · ∇wi J(\, x, y). (3)

Before 
Substituting

Candidate Set

After
Substituting

... ...

...

...

...

...
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Fast Gradient Projection Method (FGPM)
Algorithm

Algorithm 1 The FGPM Algorithm

Input: Benign sample x = 〈w1, · · ·, wi , · · ·, wn〉; True label y for
x; Target classifier q; Upper bound distance for synonyms
X; Maximum number of iterations N; Upper bound for word
substitution ratio n

Output: Adversarial example xadv
1: Initialize x0

adv = x
2: Calculate S(wi , X) by Eq. (1) for wi ∈ x0

adv
3: for k = 1→ N do
4: Construct candidate set Cs = {ŵ∗1 , · · ·, ŵ∗i , · · ·, ŵ∗n} by

Eq. (2)
5: Calculate optimal word ŵ∗ by Eq. (3)
6: Substitute w∗ ∈ xk−1

adv with ŵ∗ to obtain xk
adv

7: if q(xk
adv) 6= y and R(xk

adv , x) < n then
8: return xk

adv ⊲ Succeed
9: end if
10: end for
11: return None ⊲ Failed

R(x, xadv) =
1
n

n∑
i=1

1wi 6=w′i (wi ,w ′i )
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Adversarial Training with FGPM enhanced by Logit pairing (ATFL)
Variants of Adversarial Training in Image Domain

Adversarial training (AT), which injects adversarial examples into
training data, is one of the most efficacious defense methods in image
domain and has been widely investigated.

Defense Method Loss Function

Standard [4] UCE(F(x, ·), y) + (1 − U)CE(F(xadv , ·), y)
TRADES [17] CE(F(x, ·), y) + _ · ‖F(x, ·) − F(xadv , ·)‖
MMA [2] CE(F(x, ·), y) · 1(q(x) 6= y) + CE(F(xadv , ·), y) · 1(q(x) = y)
MART [15] BCE(F(xadv , ·), y) + _ · KL(F(x, ·)‖F(xadv , ·)) · (1 − F(x, y))
CLP [7] CE(F(x, ·), y) + _ · ‖F(x, ·) − F(x ′, ·)‖
ALP [7] UCE(F(x, ·), y) + (1 − U)CE(F(xadv , ·), y) + _ · ‖F(x, ·) − F(xadv , ·)‖

Table: The loss functions for different variations of adversarial training.
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Adversarial Training with FGPM enhanced by Logit pairing (ATFL)

Why AT has not been implemented as an effective defense method
against synonym substitution based attacks?
• AT needs a large number of adversaries for training.
• Due to the discrete input space, existing attacks do not adopt
gradient and are very slow.

Such inefficiency of existing adversary generation methods holds back
adversarial training in text domain.

The high efficiency of FGPM makes it possible for AT against
synonym substitution based attacks. We further propose Adversarial
Training with FGPM enhanced by Logit pairing (ATFL):

J̃(\, x, y) = UJ(\, x, y)+(1−U)J(\, xadv , y)+_‖F(x, ·)−F(xadv , ·)‖.
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Experiments
Experimental Setup

• Baselines
• Attacks: Papernot’ [11], GSA [8], PWWS [12] and IGA [14]
• Defenses: IBP [6], SEM [14]

• Datasets: AG’s News, DBPedia and Yahoo! Answers
• Models: CNN, LSTM and Bi-LSTM
• Hyper-parameters: n = 0.25, U = 0.5, _ = 0.5

Due to the low efficiency of attack baselines, we craft adversarial
examples on 200 randomly sampled examples on each dataset.
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Experiments
Evaluation on FGPM— Classification Accuracy under Attacks

AG’s News DBPedia Yahoo! Answers

CNN LSTM Bi-LSTM CNN LSTM Bi-LSTM CNN LSTM Bi-LSTM

No Attack† 92.3 92.6 92.5 98.7 98.8 99.0 72.3 75.1 74.9
No Attack 87.5 90.5 88.5 99.5 99.0 99.0 71.5 72.5 73.5
Papernot’ 72.0 61.5 65.0 80.5 77.0 83.5 38.0 43.0 36.5
GSA 45.5 35.0 40.0 52.0 49.0 53.5 21.5 19.5 19.0
PWWS 37.5 30.0 29.0 55.5 52.5 50.0 5.5 12.5 11.0
IGA 30.0 26.5 25.5 36.5 38.5 37.0 3.5 5.5 7.0
FGPM 37.5 31.0 32.0 40.0 45.5 47.5 6.0 17.0 10.5

Table: The classification accuracy (%) of different models under various competitive adversarial
attacks.

Compared with other attacks, FGPM achieves the attack performance on
par with other attacks.
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Experiments
Evaluation on FGPM— Transferability

CNN LSTM Bi-LSTM CNN LSTM Bi-LSTM CNN LSTM Bi-LSTM

Papernot’ 72.0* 80.5 82.5 83.5 61.5* 78.5 79.5 74.5 65.0*
GSA 45.5* 80.0 80.0 84.5 35.0* 73.0 81.5 72.5 40.0*
PWWS 37.5* 70.5 70.0 83.0 30.0* 67.5 80.0 67.5 29.0*
IGA 30.0* 74.5 74.5 84.0 26.5* 71.5 79.0 71.0 25.5*
FGPM 37.5* 72.5 74.5 81.0 31.0* 73.5 77.5 67.5 32.0*

Table: The classification accuracy (%) of different models for adversaries generated on other
models on AG’s News for transferability evaluation. * indicates that the adversaries are
generated based on this model.

The adversarial examples crafted by FGPM is on par with the best trans-
ferability performance among the baselines.
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Experiments
Evaluation on FGPM— Attack Efficiency

AG’s News DBPedia Yahoo! Answers

CNN LSTM Bi-LSTM CNN LSTM Bi-LSTM CNN LSTM Bi-LSTM

Papernot’ 74 1,676 4,401 145 2,119 6,011 120 9,719 19,211
GSA 276 643 713 616 1,006 1,173 1,257 2,234 2,440
PWWS 122 28,203 28,298 204 34,753 35,388 643 98,141 100,314
IGA 965 47,142 91,331 1,369 69,770 74,376 893 132,044 123,976
FGPM 8 29 29 8 34 33 26 193 199

Table: Comparison on the total running time (in seconds) for generating 200 adversarial
instances.

FGPM is at least 20 times faster than the fastest baseline method GSA,
while maintaining a high attack success rate.
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Experiments
Evaluation on ATFL — Defense against Adversarial Attacks

Dataset Attack CNN LSTM Bi-LSTM

NT SEM IBP ATFL NT SEM IBP ATFL NT SEM IBP ATFL

AG’s
News

No Attack† 92.3 89.7 89.4 91.8 92.6 90.9 86.3 92.0 92.5 91.4 89.1 92.1
No Attack 87.5 87.5 87.5 89.0 90.5 90.5 84.5 91.5 88.5 91.0 87.0 89.5
Papernot’ 72.0 84.5 87.5 88.0 61.5 89.5 81.5 90.0 65.0 90.0 86.0 89.0
GSA 45.5 80.0 86.0 88.0 35.0 85.5 79.5 88.0 40.0 87.5 79.0 87.5
PWWS 37.5 80.5 86.0 88.0 30.0 86.5 79.5 88.0 29.0 87.5 75.5 87.5
IGA 30.0 80.0 86.0 88.0 26.5 85.5 79.5 88.0 25.5 87.5 79.0 87.5
FGPM 37.5 78.5 86.5 88.0 31.0 85.5 80.0 88.0 32.0 84.5 80.0 87.5

DBPedia

No Attack† 98.7 98.1 97.4 98.4 98.8 98.5 93.1 98.7 99.0 98.7 94.7 98.6
No Attack 99.5 97.5 97.0 98.0 99.0 99.5 95.0 99.5 99.0 98.0 94.5 99.0
Papernot’ 80.5 97.0 97.0 98.0 77.0 99.5 91.0 99.5 83.5 98.0 92.5 99.0
GSA 52.0 96.0 97.0 98.0 49.0 99.0 84.5 98.5 53.5 98.0 89.5 99.0
PWWS 55.5 95.5 97.0 98.0 52.5 99.5 84.0 98.5 50.0 95.0 89.5 99.0
IGA 36.5 95.5 97.0 98.0 38.5 99.0 84.5 98.0 37.0 97.0 90.0 99.0
FGPM 40.0 94.0 97.0 98.0 45.5 99.0 85.0 98.5 47.5 98.0 89.5 99.0

Yahoo!
Answers

No Attack† 72.3 70.0 64.2 71.0 75.1 72.8 51.2 74.2 74.9 72.9 59.0 74.3
No Attack 71.5 67.0 64.5 72.0 72.5 69.5 50.5 74.0 73.5 69.5 56.0 72.0
Papernot’ 38.0 64.0 63.5 69.0 43.0 67.0 41.0 71.0 36.5 66.5 53.0 70.5
GSA 21.5 59.5 61.0 63.0 19.5 63.0 30.0 69.5 19.0 62.5 39.5 64.5
PWWS 5.5 59.0 61.0 62.5 12.5 63.0 30.0 68.5 11.0 62.5 40.0 65.5
IGA 3.5 59.0 61.0 62.5 5.5 62.5 31.5 67.5 7.0 62.0 40.5 64.0
FGPM 6.0 61.0 63.0 64.0 17.0 63.0 35.0 68.5 10.5 64.5 41.5 63.5

Table: The classification accuracy (%) of three competitive defense methods under various
adversarial attacks.
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Table: The classification accuracy (%) of three competitive defense methods under various
adversarial attacks.
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ATFL can obtain higher classification accuracy on benign data, and is
very competitive under almost all adversarial attacks.
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Experiments
Evaluation on ATFL — Defense against Transferability

Attack CNN LSTM Bi-LSTM

NT SEM IBP ATFL NT SEM IBP ATFL NT SEM IBP ATFL

Papernot’ 72.0* 87.0 87.0 88.5 80.5 91.0 82.0 92.0 82.5 91.0 86.0 90.0
GSA 45.5* 87.0 87.0 88.5 80.0 90.5 83.0 91.0 80.0 91.0 87.5 90.0
PWWS 37.5* 87.0 87.0 88.5 70.5 90.5 83.0 90.5 70.0 90.5 86.5 90.0
IGA 30.0* 87.0 87.0 88.5 74.5 90.5 83.5 91.0 74.5 90.5 86.5 89.5
FGPM 37.5* 87.0 87.5 88.5 72.5 90.5 83.0 91.5 74.5 91.0 86.5 90.0

Papernot’ 83.5 87.5 87.5 88.0 61.5* 91.0 82.0 91.0 78.5 91.0 86.5 89.5
GSA 84.5 87.0 87.5 88.5 35.0* 90.5 83.5 91.0 73.0 91.0 86.5 89.5
PWWS 83.0 87.0 87.5 89.0 30.0* 90.5 85.0 90.5 67.5 90.5 86.5 90.0
IGA 84.0 87.0 87.5 88.5 26.5* 90.5 83.5 91.5 71.5 91.0 87.0 90.0
FGPM 81.0 87.5 87.5 89.0 31.0* 90.5 83.5 91.5 73.5 91.0 87.0 89.5

Papernot’ 79.5 88.0 87.0 88.5 74.5 91.0 82.5 91.0 65.0* 91.0 86.5 89.0
GSA 81.5 87.0 87.5 88.5 72.5 90.5 84.0 91.0 40.0* 91.0 87.5 90.0
PWWS 80.0 86.5 87.0 89.0 67.5 90.5 83.5 91.5 29.0* 90.5 87.0 90.0
IGA 79.0 87.0 87.0 88.5 71.0 90.5 83.5 91.0 25.5* 91.0 86.5 89.5
FGPM 77.5 87.5 87.5 89.0 67.5 90.5 83.5 91.0 32.0* 91.0 87.0 89.5

Table: The classification accuracy (%) of various models with competitive defenses for
evaluating the defense performance against transferability on AG’s News.
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ATFL is much more successful in blocking the transferability of adver-
sarial examples than the defense baselines on CNN and LSTM. Besides,
ATFL achieves similar accuracy to SEM on Bi-LSTM.
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Experiments
Evaluation on Adversarial Training Variants

Model Attack NT Standard TRADES MMA MART CLP ALP

CNN

No Attack† 92.3 92.3 92.1 91.1 91.2 91.7 91.8
No Attack 87.5 89.5 89.5 87.5 87.0 90.5 89.0
Papernot’ 72.0 85.5 67.0 83.5 83.5 73.0 88.0
GSA 45.5 77.5 36.5 69.0 73.0 42.5 88.0
PWWS 37.5 77.0 33.5 70.5 73.0 38.5 88.0
IGA 30.0 75.0 29.0 67.5 72.0 30.0 88.0
FGPM 37.5 78.0 40.0 73.5 74.5 38.5 88.0

LSTM

No Attack† 92.6 92.6 91.9 91.3 90.7 92.1 92.0
No Attack 90.5 92.0 90.5 89.0 87.5 91.0 91.5
Papernot’ 61.5 88.0 66.0 86.0 86.0 69.0 90.0
GSA 35.0 83.0 37.5 78.0 79.0 40.5 88.0
PWWS 30.0 84.0 32.0 78.0 79.5 46.5 88.0
IGA 26.5 83.0 24.0 77.5 79.5 34.0 88.0
FGPM 31.0 83.0 32.5 81.5 80.5 41.0 88.0

Bi-LSTM

No Attack† 92.5 92.8 92.4 91.4 92.3 92.4 92.1
No Attack 88.5 89.5 90.5 88.5 90.0 90.5 89.5
Papernot’ 65.0 89.5 65.5 85.5 86.0 89.0 89.0
GSA 40.0 86.0 35.5 81.0 80.5 38.5 87.5
PWWS 29.0 86.5 30.0 80.0 80.5 52.0 87.5
IGA 25.5 86.0 29.0 78.5 80.0 34.5 87.5
FGPM 32.0 86.5 32.0 82.0 80.5 46.0 87.5

Table: The classification accuracy (%) of different classification models adversarially trained
with different regularization under various adversarial attacks on AG’s News.
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Some recent variants that work very well for images significantly degrade
the performance of standard adversarial training for texts, indicating
that we need more specialized adversarial training methods for texts.



Background FGPM ATFL Experiment Conclusion

Conclusion

1 We propose an efficient gradient based synonym substitution
adversarial attack called FGPM, which is at least 20 times faster
than the existing fastest attack and achieves the similar attack
performance and transferability.

2 We introduce adversarial training into text domain against
synonym substitution adversarial attacks which significantly
improves the model robustness.

3 We find that recent successful regularizations of adversarial
training for image data actually degrade the performance of
adversarial training in text domain, suggesting the need for more
specialized adversarial training methods for text data.

We also release our code at https://github.com/JHL-HUST/FGPM.
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