

Rethinking the Backward Propagation for Adversarial Transferability

Xiaosen Wang^{1*}, Kangheng Tong^{2*}, Kun He^{2†}

¹ Singular Security Lab

² School of Computer Science and Technology, Huazhong University of Science and Technology

Contact: <u>xiaosen@hust.edu.cn</u>

Homepage: http://xiaosenwang.com/

11/2/2023

Adversarial Example

NEURAL INFORMATION PROCESSING SYSTEMS

Adversarial examples are indistinguishable from legitimate ones by adding small perturbations, but lead to incorrect model prediction.

In the **black-box** setting, the attacker access limited or no information about the target model, making it applicable in the physical world. **Transfer-based attacks** generate adversarial examples on the **surrogate model** to fool the **target models**.

Adversarial Example

Transfer-based attacks

- **Ghost** [Li et al., 2020] attacks a set of ghost networks generated by densely applying dropout at intermediate features.
- **SGM** [Wu et al., 2020] adjusts the decay factor to incorporate more gradients of the skip connections of ResNet to generate more transferable adversarial examples.
- LinBP [Guo et al., 2020] performs backward propagation in a more linear fashion by setting the gradient of ReLU as 1 and scaling the gradient of residual blocks.

Backward Propagation Attack

Attacker's Goal: Adversarial attack optimizes the perturbation by maximizing the objective function:

$$x^{adv} = \operatorname*{argmax}_{\|x'-x\|_p \le \epsilon} J(x', y; \theta)$$

White-box attacks often calculate the gradient to address such issue:

$$\nabla_x J(x,y;\theta) = \frac{\partial J(x,y;\theta)}{\partial f_{l+1}(z_l)} \left(\prod_{i=k+1}^l \frac{\partial f_{i+1}(z_i)}{z_i}\right) \frac{\partial z_{k+1}}{\partial z_k} \frac{\partial z_k}{\partial x}$$

Assumption: The truncation of gradient $\nabla_x J(x, y; \theta)$ introduced by **non-**linear layers in the backward propagation process decays the adversarial transferability.

Backward Propagation Attack

Verification:

- Randomly masking the gradient decays adversarial transferability
- Recovering the gradient of non-linear layers enhances adversarial transferability.

NEURAL INFORMATION PROCESSING SYSTEMS

Backward Propagation Attack

ReLU: Use the derivative of **SiLU** to calculate the gradient of ReLU during the backward propagation process:

$$\frac{\partial z_{i+1}}{\partial z_i} = \sigma(z_i) \cdot \Big(1 + z_i \cdot \big(1 - \sigma(z_i)\big)\Big).$$

Max-pooling: Use the **softmax** function to calculate the gradient within each window *w* of the max-pooling operation:

$$\left[\frac{\partial z_{k+1}}{\partial z_k}\right]_{i,j,w} = \frac{e^{t \cdot z_{k,i,j}}}{\sum_{v \in w} e^{t \cdot v}}$$

0.7 0.6 0.5 1.7

Experimental Results

Attacker	Method	Inc-v3	IncRes-v2	DenseNet	MobileNet	PNASNet	SENet	Inc-v 3_{ens3}	Inc-v 3_{ens4}	IncRes-v 2_{ens}
	N/A	16.34	13.38	36.86	36.12	13.46	17.14	10.24	9.46	5.52
	SGM	23.68	19.82	51.66	55.44	22.12	30.34	13.78	12.38	7.90
PGD	LinBP	27.22	23.04	59.34	59.74	22.68	33.72	16.24	13.58	7.88
	Ghost	17.74	13.68	42.36	41.06	13.92	19.10	11.60	10.34	6.04
	BPA	35.36	30.12	70.70	68.90	32.52	42.02	22.72	19.28	12.40
	N/A	26.20	21.50	51.50	49.68	22.92	30.12	16.22	14.58	9.00
	SGM	33.78	28.84	63.06	65.84	31.90	41.54	19.56	17.48	10.98
MI-FGSM	LinBP	35.92	29.82	68.66	69.72	30.24	41.68	19.98	16.58	9.94
	Ghost	29.76	23.68	57.28	56.10	25.00	34.76	17.10	14.76	9.50
	BPA	47.58	41.22	80.54	79.40	44.70	54.28	32.06	25.98	17.46
VMI-FGSM	N/A	42.68	36.86	68.82	66.68	40.78	46.34	27.36	24.20	17.18
	SGM	50.04	44.28	77.56	79.34	48.58	56.86	32.22	27.72	19.66
	LinBP	47.70	40.40	77.44	78.76	41.48	52.10	28.58	24.06	16.60
	Ghost	47.82	41.42	75.98	73.40	44.84	52.78	30.84	27.18	19.08
	BPA	55.00	48.72	85.44	83.64	52.02	60.88	38.76	33.70	23.78
	N/A	29.10	26.08	58.02	59.10	27.60	39.16	15.12	12.30	7.86
	SGM	35.64	32.34	65.20	71.22	34.20	46.72	17.10	13.86	9.08
ILA	LinBP	37.36	34.24	71.98	72.84	35.12	48.80	19.38	14.10	9.28
	Ghost	30.06	26.50	60.52	61.74	28.68	40.46	14.84	12.54	7.90
	BPA	47.62	43.50	81.74	80.88	47.88	60.64	27.94	20.64	14.76
	N/A	35.78	29.58	60.46	64.70	25.66	34.18	20.64	17.30	11.44
	SGM	45.22	38.98	70.22	78.44	35.30	46.06	26.28	21.64	14.50
SSA	LinBP	48.48	41.90	75.02	78.30	36.66	49.58	28.76	23.64	15.46
	Ghost	36.44	28.62	61.12	66.80	24.90	33.98	20.58	16.84	10.82
	BPA	51.36	44.70	76.24	79.66	39.38	50.00	32.10	26.44	18.20

Table 1: Untargeted attack success rates (%) of various adversarial attacks on nine models when generating the adversarial examples on ResNet-50 w/wo various model-related methods.

RAL INFORMATION

PROCESSING SYS1

Experimental Results

NEURAL INFORMATION PROCESSING SYSTEMS
•

Attacker	Method	Inc-v3	IncRes-v2	DenseNet	MobileNet	PNASNet	SENet	Inc-v 3_{ens3}	Inc-v 3_{ens4}	IncRes-v 2_{ens}
PGD	SGM	23.68	19.82	51.66	55.44	22.12	30.34	13.78	12.38	7.90
	SGM+BPA	_ 43.44	38.14	77.66	81.50	41.42	53.56	27.20	22.58	14.70
	LinBP	27.22	23.04	59.34	59.74	22.68	33.72	16.24	13.58	7.88
	LinBP+BPA	39.08	34.80	77.80	76.86	40.50	50.26	25.66	22.46	15.10
	Ghost	17.74	13.68	42.36	41.06	13.92	19.10	11.60	10.34	6.04
	Ghost+BPA	34.62	29.28	69.48	69.20	29.98	41.60	22.68	18.88	11.48
MI-FGSM	SGM	33.78	28.84	63.06	65.84	31.90	41.54	19.56	17.48	10.98
	SGM+BPA	56.04	49.10	85.32	88.08	52.96	63.30	36.10	29.78	20.98
	LinBP	35.92	29.82	68.66	69.72	30.24	41.68	19.98	16.58	9.94
	LinBP+BPA	48.74	43.96	83.30	83.52	50.00	59.22	32.60	28.42	20.32
	Ghost	29.76	23.68	57.28	56.10	25.00	34.76	17.10	14.76	9.50
	Ghost+BPA	50.42	42.84	83.02	81.24	44.70	56.50	32.46	26.82	18.34

Table 2: Untargeted attack success rates (%) of various baselines combined with our method using PGD and MI-FGSM. The adversarial examples are generated on ResNet-50.

Experimental Results

Attacker	Method	HGD	R&P	NIPS-r3	JPEG	RS	NRP
	N/A	9.34	5.00	6.00	11.04	8.50	11.96
	SGM	16.80	7.50	9.44	13.96	10.50	12.76
PGD	LinBP	16.80	7.68	10.08	15.76	10.50	13.14
	Ghost	9.60	5.06	6.42	11.92	9.50	12.06
	BPA	23.96	12.02	15.60	22.52	14.00	14.08
	N/A	16.64	8.04	9.92	16.68	13.00	13.32
	SGM	24.80	11.02	13.16	20.26	14.00	14.38
MI-FGSM	LinBP	21.98	10.32	13.26	20.56	12.50	13.22
	Ghost	17.98	8.88	10.64	18.52	13.50	13.84
	BPA	34.30	17.84	22.04	30.86	17.50	15.96

Table 3: Untargeted attack success rates (%) of several attacks on six defenses when generating the adversarial examples on ResNet-50 w/wo various model-related methods.

Attacker	ReLU	Max-pooling	Inc-v3	IncRes-v2	DenseNet	MobileNet	PNASNet	SENet	Inc-v3 _{ens3}	Inc-v 3_{ens4}	IncRes-v 2_{ens}
PGD	X	×	16.34	13.38	36.86	36.12	13.46	17.40	10.24	9.46	5.52
	✓	×	29.38	24.00	62.80	61.82	24.98	34.96	17.52	14.38	8.90
	×	1	20.26	16.16	44.66	42.82	17.12	21.52	13.20	11.88	7.74
	1	\checkmark	35.36	30.12	70.70	68.90	32.52	42.02	22.72	19.28	12.40
MI-FGSM	X	×	26.20	21.50	51.50	49.68	22.92	30.12	16.22	14.58	9.00
	✓	×	41.50	34.42	74.96	74.42	35.96	47.58	23.34	18.22	10.94
	X	1	34.16	29.02	61.38	59.42	32.24	37.32	21.74	19.96	14.70
	✓	\checkmark	47.58	41.22	80.54	79.40	44.70	54.28	32.06	25.98	17.46

Table 5: Untargeted attack success rates (%) of PGD and MI-FGSM when generating adversarial examples on ResNet-50 w/wo modifying the backward propagation of ReLU or max-pooling.

Summary

- To our knowledge, it is the first work that proposes and empirically validates the detrimental effect of **gradient truncation** on adversarial transferability. This finding sheds new light on improving adversarial transferability and provides new directions to boost model robustness.
- We propose a model-related attack called **BPA** to mitigate the negative impact of gradient truncation and enhance the relevance of gradient between the loss function and the input.
- Extensive experiments on ImageNet dataset demonstrate that BPA could significantly boost various untargeted and targeted transfer-based attacks.

TransferAttack

PROCESSING S

Xiaosen Wang^{1*}, Kangheng Tong^{2*}, Kun He^{2†}

¹ Singular Security Lab

² School of Computer Science and Technology, Huazhong University of Science and Technology

Contact: <u>xiaosen@hust.edu.cn</u>

Homepage: <u>http://xiaosenwang.com/</u>

11/2/2023