

Recent Progresses in Transfer-based Attack for Image Recognition

Xiaosen Wang Huawei Singularity Security Lab

CONTENTS

1 Preliminaries

Gradient-based Attacks

Input Transformationbased Attacks

4 Model-related Attacks Advanced Objective Functions

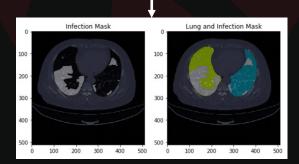
- Preliminaries
- DNNs are everywhere in our life!

Image Classification

Voice Recognition

Autonomous Driving

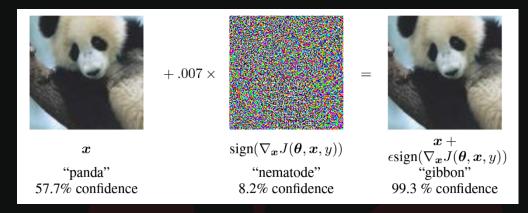
Object Detection



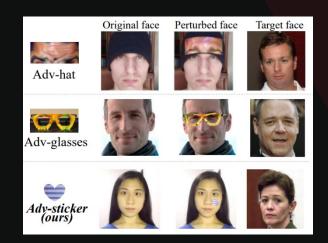
Medical Diagnostics

Facial Scan Payment

 Adversarial examples are indistinguishable from legitimate ones by adding small perturbations, but lead to incorrect model prediction.



Adversarial examples bring a huge threats to AI applications.



How to generate Adversarial examples?

Training a Network:

$$\min_{\theta} \mathbb{E}_{(x,y)\sim \mathcal{D}} J(x,y;\theta).$$

Generating Adversarial Example:

$$\max_{||x-x^{adv}||<\epsilon} J(x^{adv}, y; \theta).$$

D: Training dataset

 $J(\cdot)$: Loss function

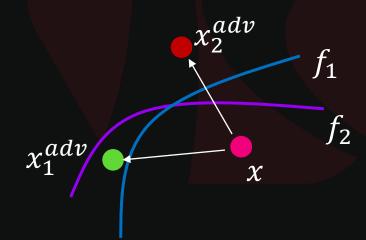
x: Clean input

y: Ground-truth label

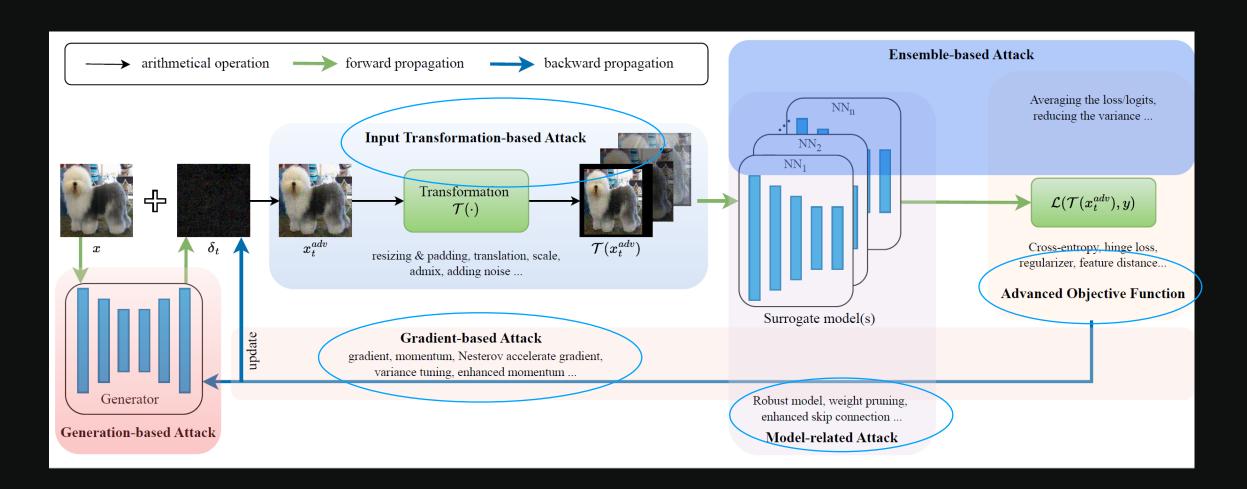
 x^{adv} : Adversarial example

- Untargeted attack: The victim model predicts the generated adversarial example into *any incorrect* categories.
- **Targeted attack:** The victim model predicts the generated adversarial example into *a specific category*.

- White-box Attack: The attacker could access any information of victim model, *e.g.*, architecture, weights, gradients, *etc*.
- Black-box Attack: The attacker could access limited information of victim model.
 - Score-based Attack: The attacker could obtain the prediction probability.
 - **Decision-based Attack**: The attacker could obtain the prediction label.
 - Transfer-based Attack: The adversarial examples generated on one model could mislead other victim models.



Transfer-based Attacks



CONTENTS

1 Preliminaries

Gradient-basedAttacks

Input Transformationbased Attacks

Model-related Attacks

Advanced Objective Functions

- Gradient-based adversarial attacks are widely investigated:
 - FGSM [Goodfellow et al., 2015]:

$$x^{adv} = x + \epsilon \cdot \text{sign}(\nabla_x J(x, y; \theta))$$

➤ I-FGSM [Kurakin et al., 2018]:

$$x_{t+1}^{adv} = x_t^{adv} + \alpha \cdot \operatorname{sign}\left(\nabla_x J(x_t^{adv}, y; \theta)\right)$$

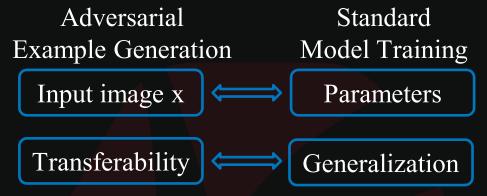
➤ MI-FGSM [Dong et al., 2018]:

$$g_{t+1} = \mu g_t + \frac{\nabla_x J(x_t^{adv}, y; \theta)}{||\nabla_x J(x_t^{adv}, y; \theta)||_1}, x_{t+1}^{adv} = x_t^{adv} + \alpha \cdot \text{sign}(g_{t+1})$$

NI-FGSM [Lin et al., 2020]: $\bar{x}_t^{adv} = x_t^{adv} + \alpha \cdot \mu \cdot g_t$

$$g_{t+1} = \mu g_t + \frac{\nabla_x J(\bar{x}_t^{adv}, y; \theta)}{||\nabla_x J(\bar{x}_t^{adv}, y; \theta)||_1}, x_{t+1}^{adv} = x_t^{adv} + \alpha \cdot \text{sign}(g_{t+1})$$

Variance Tuning (VT)



NI-FGSM finds that Nestorve Accelerated Gradient (NAG) that accelerates the convergence of optimization process, also enhances the transferability.

We treat the iterative gradient-based adversarial attack as **SGD optimization process**, in which at each iteration, the attacker always chooses the target model for update.

SGD introduces variance due to randomness.

• Variance Tuning (VT)

Gradient Variance. Given a classifier f with parameters θ and loss function $J(x, y; \theta)$, an arbitrary image x and upper bound ϵ' for the neighborhood, the gradient variance can be defined as:

$$V_{\epsilon'}^{g}(\mathbf{x}) = \mathbb{E}_{|\mathbf{x}'-\mathbf{x}|_{p} < \epsilon'} \left[\nabla_{\mathbf{x}'} J(\mathbf{x}', \mathbf{y}; \theta) \right] - \nabla_{\mathbf{x}} J(\mathbf{x}, \mathbf{y}; \theta).$$

In practice, we approximate the gradient variance by sampling N examples in the neighborhood of x:

$$V(x) = \frac{1}{N} \sum_{i=1}^{N} \nabla_{x^{i}} J(x^{i}, y; \theta) - \nabla_{x} J(x, y; \theta),$$

where
$$x^i = x + U[-(\beta \cdot \epsilon)^d, (\beta \cdot \epsilon)^d]$$
.

At t-th iteration, we tune the gradient of x_t^{adv} with the gradient variance at (t-1)-th iteration to stabilize the update direction.

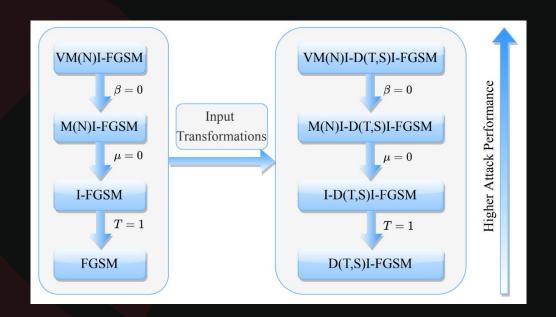
Variance Tuning (VT)

The variance tuning is generally applicable to all iterative gradient based attacks.

VMI-FGSM:

$$g_{t+1} = \mu \cdot g_t + \frac{\nabla_{x_t^{adv}} J(x_t^{adv}, y; \theta) + V(x_{t-1}^{adv})}{||\nabla_{x_t^{adv}} J(x_t^{adv}, y; \theta) + V(x_{t-1}^{adv})||_1},$$

$$x_{t+1}^{adv} = x_t^{adv} + \alpha \cdot \text{sign}(g_{t+1})$$



Variance Tuning (VT)

Model	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-101	Inc-v3 _{ens3}	Inc-v3 _{ens4}	$IncRes-v2_{ens}$
Inc-v3	MI-FGSM	100.0*	43.6	42.4	35.7	13.1	12.8	6.2
	VMI-FGSM	100.0*	71.7	68.1	60.2	32.8	31.2	17.5
	NI-FGSM	100.0*	51.7	50.3	41.3	13.5	13.2	6.0
	VNI-FGSM	100.0*	76.5	74.9	66.0	35.0	32.8	18.8
	MI-FGSM	56.3	99.7*	46.6	41.0	16.3	14.8	7.5
Ino v4	VMI-FGSM	77.9	99.8*	71.2	62.2	38.2	38.7	23.2
Inc-v4	NI-FGSM	63.1	100.0*	51.8	45.8	15.4	13.6	6.7
	VNI-FGSM	83.4	99.9*	76.1	66.9	40.0	37.7	24.5
	MI-FGSM	60.7	51.1	97.9*	46.8	21.2	16.0	11.9
InoDoc v2	VMI-FGSM	77.9	72.1	97.9*	67.7	46.4	40.8	34.4
IncRes-v2	NI-FGSM	62.8	54.7	99.1*	46.0	20.0	15.1	9.6
	VNI-FGSM	80.8	76.9	98.5*	69.8	47.9	40.3	34.2
Res-101	MI-FGSM	58.1	51.6	50.5	99.3*	23.9	21.5	12.7
	VMI-FGSM	75.1	68.9	70.5	99.2*	45.2	41.4	30.1
	NI-FGSM	65.6	58.3	57.0	99.4*	24.5	21.4	11.7
	VNI-FGSM	79.8	74.6	73.2	99.7*	46.1	42.5	32.1

Table 1: The success rates (%) on seven models in the single model setting by various gradient-based iterative attacks. The adversarial examples are crafted on Inc-v3, Inc-v4, IncRes-v2, and Res-101 respectively. * indicates the white-box model.

CONTENTS

1 Preliminaries

Gradient-based Attacks

Input Transformation-based Attacks

4 Model-related Attacks Advanced Objective Functions

- Similar to data augmentation in training, input transformation can enhance the diversity of image, thus boosting adversarial transferability.
 - ➤ **DIM** [Xie et al., 2019]: Randomly resize the image and add padding for gradient calculation.
 - > TIM [Dong et al., 2019]: Accumulate the gradient on a set of translated images. To approximate this process, TIM convolves the gradient of original image with a predefined kernel.
 - > SIM [Lin et al., 2020]: Accumulate the gradient on a set of scaled images.
 - Admix [Wang et al., 2021]: Mixup the image with the images from other categories for gradient calculation.
 - > SSA [Long et al., 2022]: Add noise and randomly mask the elements in the frequency domain to generate several images for gradient calculation.

• Structure Invariant Attack (SIA)

Assumption: The **more diverse** the transformed images are, the **better transferability** the adversarial examples have.

LPIPS
$$(x, \hat{x}) = \frac{1}{H \times W} \sum_{l} \sum_{h,w} ||z_{h,w}^{l} - \hat{z}_{h,w}^{l}||_{2}$$

	TIM	DIM	SIM	SSA	Admix
Transferability					83.6
LPIPS	0.25	0.43	0.48	0.54	0.73

Table 1: The transferability of TIM, DIM, SIM, Admix, SSA, and similarity between 1,000 images and the transformed images evaluated by LPIPS. The transferability is evaluated by the attack success rate of Inception-v3 on the adversarial examples generated on ResNet-18.

• Structure Invariant Attack (SIA)

Structure of Image: Given an image x, which is randomly split into $s \times s$ blocks, the relative relation between each anchor point is the structure of image, where the anchor point is the center of the image block.

Figure 2: The randomly sampled raw image and its transformed images by scaling on the full image and 3×3 blocks.

The structure of image depicts important semantic information for human recognition. Scaling the image blocks with various factors does not change the structure of image so that the generated image can be correctly recognized by humans as well as deep models.

• Structure Invariant Attack (SIA)

To improve the diversity and maintain the semantic information, we apply various image transformations to different image blocks, denoted as Structure Invariant Transformation (SIT).

- The proposed transformation significantly improves the diversity but maintains the structure invariance.
- The proposed transformation can be integrated into existing gradient-based methods.
- The gradient is computed on several transformed images.

• Structure Invariant Attack (SIA)

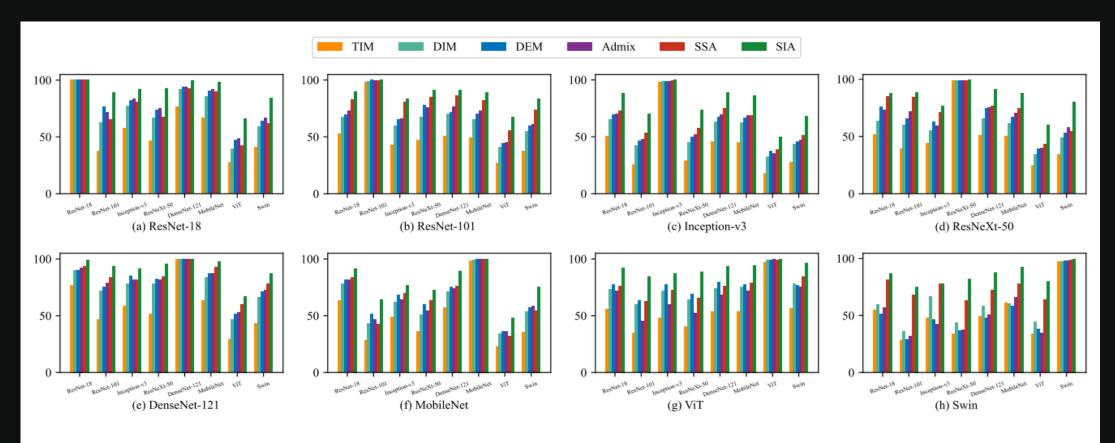


Figure 3: Attack success rates (%) of eight deep models on the adversarial examples crafted on each model by TIM, DIM, DEM, *Admix*, SSA, and SIA.

CONTENTS

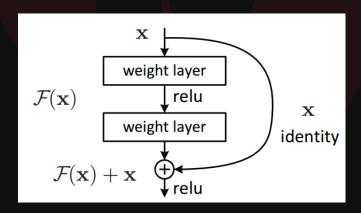
1 Preliminaries

Gradient-based Attacks Input Transformationbased Attacks

4 Model-related Attacks

Advanced Objective Functions

- Modifying the surrogate model to boost adversarial transferability.
 - ➤ **Ghost Network** [Li et al., 2020]: Densely add dropout layer and randomly scale the feature passing the skip connection of ResNets.
 - > SGM [Wu et al., 2020]: Adopt more gradient from the skip connections instead of the residual modules using a decay factor for backpropagation.
 - ➤ LinBP [Guo et al., 2020]: Adopt constant value as the gradient of ReLU activation and modify the gradient of residual modules to makes backpropagation more linear.



Backward Propagation Attack (BPA)

Backpropagation follows the chain rule:

$$\frac{\partial J(x,y;\theta)}{\partial x} = \frac{\partial J(x,y;\theta)}{\partial f_{l+1}(z_l)} \left(\prod_{i=k+1}^{l} \frac{\partial f_{i+1}(z_i)}{\partial z_i} \right) \frac{\partial z_{k+1}}{\partial z_k} \frac{\partial z_k}{\partial x}$$

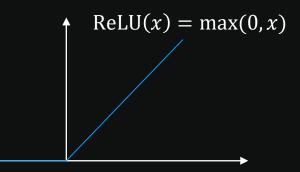
Non-linear layers result in the truncation of gradients w.r.t. images.

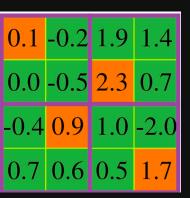
> ReLU activation function

$$\frac{\partial z_{i+1}}{\partial z_i} = \begin{cases} 1 & \text{if } z_i > 0\\ 0 & \text{otherwise} \end{cases}$$

➤ Maxpooling layer

$$\frac{\partial z_{i+1}}{\partial z_i} = \begin{cases} 1 & \text{if } z_i \text{ is the maximum value in the window} \\ 0 & \text{otherwise} \end{cases}$$

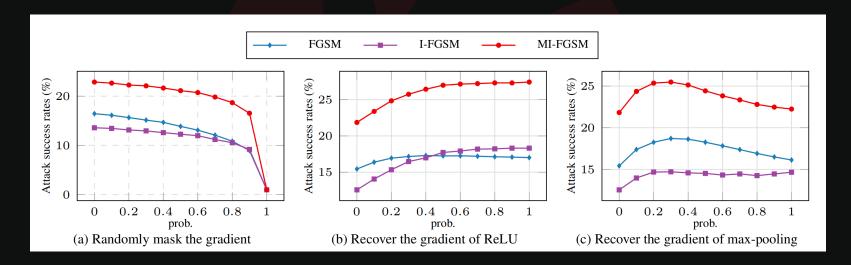




• Backward Propagation Attack (BPA)

Assumption: The truncation of gradient introduced by non-linear layers in the backward propagation process decays the adversarial transferability.

- Randomly mask the gradient to introduce more truncation.
- Randomly replace the zeros in the gradient of ReLU or maxpooling layers with ones



Gradient Truncation decays the transferability!

Backward Propagation Attack (BPA)

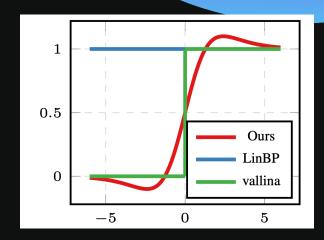
Recover the truncated gradient for better transferability:

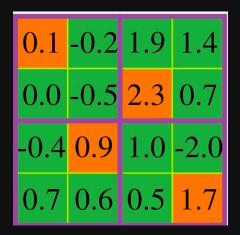
➤ Replace the gradient of ReLU with that of SiLU

$$\frac{\partial z_{i+1}}{\partial z_i} = \sigma(z_i) \left(1 + z_i \cdot \left(1 - \sigma(z_i) \right) \right)$$

Adopting the Softmax function to calculate the gradient within each window w of the max-pooling:

$$\left[\frac{\partial z_{k+1}}{\partial z_k}\right]_{i,i,w} = \frac{e^{t \cdot z_{k,i,j}}}{\sum_{v \in w} e^{t \cdot v}}$$





Backward Propagation Attack (BPA)

Attacker	Method	Inc-v3	IncRes-v2	DenseNet	MobileNet	PNASNet	SENet	Inc-v3 _{ens3}	Inc-v3 _{ens4}	IncRes-v2 _{ens}
	N/A	16.34	13.38	36.86	36.12	13.46	17.14	10.24	9.46	5.52
	SGM	23.68	19.82	51.66	55.44	22.12	30.34	13.78	12.38	7.90
PGD	LinBP	27.22	23.04	59.34	59.74	22.68	33.72	16.24	13.58	7.88
	Ghost	17.74	13.68	42.36	41.06	13.92	19.10	11.60	10.34	6.04
	BPA	35.36	30.12	70.70	68.90	32.52	42.02	22.72	19.28	12.40
	N/A	26.20	21.50	51.50	49.68	22.92	30.12	16.22	14.58	9.00
	SGM	33.78	28.84	63.06	65.84	31.90	41.54	19.56	17.48	10.98
MI-FGSM	LinBP	35.92	29.82	68.66	69.72	30.24	41.68	19.98	16.58	9.94
	Ghost	29.76	23.68	57.28	56.10	25.00	34.76	17.10	14.76	9.50
	BPA	47.58	41.22	80.54	79.40	44.70	54.28	32.06	25.98	17.46
	N/A	42.68	36.86	68.82	66.68	40.78	46.34	27.36	24.20	17.18
	SGM	50.04	44.28	77.56	79.34	48.58	56.86	32.22	27.72	19.66
VMI-FGSM	LinBP	47.70	40.40	77.44	78.76	41.48	52.10	28.58	24.06	16.60
	Ghost	47.82	41.42	75.98	73.40	44.84	52.78	30.84	27.18	19.08
	BPA	55.00	48.72	85.44	83.64	52.02	60.88	38.76	33.70	23.78
ILA	N/A	29.10	26.08	58.02	59.10	27.60	39.16	15.12	12.30	7.86
	SGM	35.64	32.34	65.20	71.22	34.20	46.72	17.10	13.86	9.08
	LinBP	37.36	34.24	71.98	72.84	35.12	48.80	19.38	14.10	9.28
	Ghost	30.06	26.50	60.52	61.74	28.68	40.46	14.84	12.54	7.90
	BPA	47.62	43.50	81.74	80.88	47.88	60.64	27.94	20.64	14.76
SSA	N/A	35.78	29.58	60.46	64.70	25.66	34.18	20.64	17.30	11.44
	SGM	45.22	38.98	70.22	78.44	35.30	46.06	26.28	21.64	14.50
	LinBP	48.48	41.90	75.02	78.30	36.66	49.58	28.76	23.64	15.46
	Ghost	36.44	28.62	61.12	66.80	24.90	33.98	20.58	16.84	10.82
	BPA	51.36	44.70	76.24	79.66	39.38	50.00	32.10	26.44	18.20

CONTENTS

1 Preliminaries

Gradient-based Attacks Input Transformationbased Attacks

4 Model-related Attacks Advanced Objective Functions

- Several attacks disrupt the high-level features:
 - > FIA [Wang et al., 2021]: Adopt aggregate gradient to highlight important features:

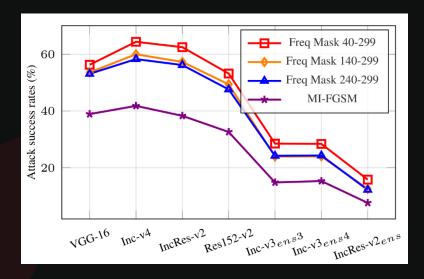
$$\overline{\Delta}_{k}^{x} = \frac{1}{C} \sum_{n=1}^{N} \frac{\partial J(x \odot M_{p}^{n}, y; \theta)}{\partial f_{k}(x \odot M_{p}^{n})}, M_{p} \sim \text{Bernoulli}(1-p), L(x) = \sum (\overline{\Delta}_{k}^{x} \odot f_{k}(x))$$

- ➤ RPA [Zhang et al., 2022]: Instead of randomly masking the pixels, RPA randomly split the image into patches, which will be randomly masked for calculating the weight matrix.
- > NAA [Zhang et al., 2022]: Adopt integrated gradients for neuron attribution:

$$\overline{\Delta}_{k}^{x} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial J\left(x' + \frac{n}{N}(x - x'), y; \theta\right)}{\partial f_{k}\left(x' + \frac{n}{N}(x - x')\right)}, L(x) = \sum \left|\overline{\Delta}_{k}^{x} \odot \left(f_{k}(x) - f_{k}(x')\right)\right|$$

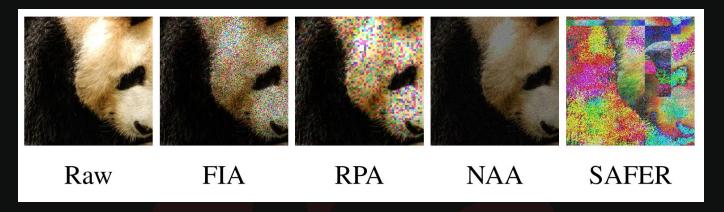
• Semantic and Abstract FEatures disRuption (SAFER)

DNNs usually focus more on high-frequency components (e.g., texture, edge)



High frequency components are beneficial for boosting adversarial transferability!

• Semantic and Abstract FEatures disRuption (SAFER)



Randomly perturbing the semantic and abstract features:

Blockmix:
$$B(x, x') = \begin{cases} x_{i,j} & \text{with the probability } p \\ x'_{i,j} & \text{with the probability } 1 - p \end{cases}$$

Frequency Perturbation: $FP(x) = \mathcal{D}_I(\mathcal{D}(x + \xi) \odot \mathcal{M})$

$$x_{SAFER} = FP(B(x, x')), \overline{\Delta}_{k}^{x} = \frac{1}{C} \sum_{n=1}^{N} \frac{\partial J(x_{SAFER}, y; \theta)}{\partial f_{k}(x_{SAFER})}, L(x) = \sum (\overline{\Delta}_{k}^{x} \odot f_{k}(x))$$

• Semantic and Abstract FEatures disRuption (SAFER)

Model	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-152	VGG-16	Inc-v3 _{ens3}	Inc-v3 _{ens4}	IncRes-v2 _{ens}
	MIM	100.0*	42.4	39.8	33.0	39.6	15.4	15.9	7.7
	FIA	98.3*	83.3	80.1	72.4	71.4	43.3	43.6	23.5
Inc-v3	RPA	97.9*	84.1	82.4	77.7	75.7	44.8	45.0	25.7
	NAA	97.0*	82.9	81.3	74.7	70.1	49.9	50.2	30.2
	SAFER	98.7*	87.7	86.7	80.4	80.0	52.1	52.6	32.2
	MIM	59.7	100.0*	45.3	38.8	47.7	18.5	18.3	9.2
	FIA	75.0	90.2*	70.4	65.2	65.5	39.4	39.2	23.8
Inc-v4	RPA	79.1	92.8*	75.2	69.0	70.2	44.2	43.5	25.7
	NAA	81.8	96.1*	76.1	71.4	70.2	47.2	45.7	31.2
	SAFER	86.9	97.6*	83.5	79.4	80.0	51.9	50.5	32.0
	MIM	52.6	47.8	44.9	99.5*	50.3	24.5	24.3	12.0
	FIA	80.6	78.6	77.6	98.2*	75.9	52.9	48.6	34.0
Res-152	RPA	81.4	80.1	80.2	98.0*	76.4	56.4	50.8	37.6
	NAA	83.9	82.2	80.4	97.5*	78.7	59.5	56.3	43.5
	SAFER	87.6	86.2	86.2	99.1*	83.9	61.9	58.2	44.7
VGG-16	MIM	83.0	81.6	76.4	79.5	100.0*	76.6	73.2	62.2
	FIA	95.7	96.7	94.3	94.2	100.0*	91.8	92.3	86.6
	RPA	96.2	96.3	93.4	94.1	100.0*	92.5	93.2	88.3
	NAA	94.5	93.4	91.1	92.3	98.3*	91.1	90.3	82.6
	SAFER	98.0	97.3	95.8	95.6	100.0*	93.9	93.7	90.4

CONTENTS

1 Preliminaries

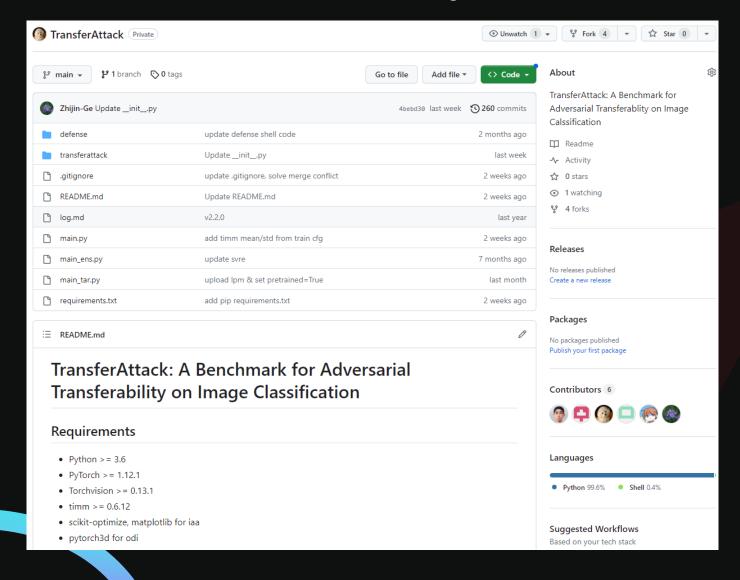
Gradient-based Attacks

Input Transformationbased Attacks

4 Model-related Attacks Advanced Objective Functions

Further Discussion & Conclusion

• TransferAttack: a benchmark containing more than 60 transfer-based attack methods



The framework will be released soon!

