TextHacker: Learning based Hybrid Local Search Algorithm for Text Hard-label Adversarial Attack Zhen Yu¹, Xiaosen Wang^{1,2}, Wanxiang Che³, Kun He¹

School of Computer Science and Technology, Huazhong University of Science and Technology ² Huawei Singular Security Lab, ³ Research Center for SCIR, Harbin Institute of Technology

Introduction

DNNs in NLP tasks are known to be vulnerable to adversarial examples, in which imperceptible modification on the correctly classified samples could mislead the model.

Hard-label Attack: a kind of Black-Box Attack. Attacker can only access the model hard prediction label, which is more applicable in real-world scenarios but also more challenging.

Background: due to the limited information (i.e., only the prediction labels) for hard-label attacks, it is hard to estimate the word importance, leading to relatively low effectiveness and efficiency on existing hard-label attacks.

Algorithm

Algorithm 1: The TextHacker Algorithm

Input: Input sample *x*, target classifier *f*, query budget *T*, reward *r*, population size S, maximum number of local search N**Output:** Attack result and adversarial example 1 **Adversary Initialization** ² Construct the candidate set $C(w_i)$ for each $w_i \in x$ 3 $x_1 = x, x_1^{adv} = None$ 4 for $t = 1 \rightarrow T$ do

```
x_{t+1} = WordSubstituion(x_t, C)
```

```
if f(x_{t+1}) \neq f(x) then
```

```
x_1^{adv} = x_{t+1}; break
```

```
s if x_1^{adv} is None then
```

```
return False, None
9
```

```
10 Perturbation Optimization
```

```
11 Initialize the weight table \mathcal{W} with all 0s
```

```
12 x_{i+1}^{adv} = LocalSearch(x_i^{adv}, C, W)
```

```
13 \mathcal{P}^1 = \{x_1^{adv}, \dots, x_i^{adv}, \dots, x_S^{adv}\}
```

```
14 t = t + S - 1; g = 1
```

18

19

20

21

22

23

```
15 while t \leq T do
```

```
16 \mathcal{P}^g = \mathcal{P}^g \cup \{ Recombination(\mathcal{P}^g, \mathcal{W}) \}
17
```

```
for each text x_q^{adv} \in \mathcal{P}^g do
      With x_1^{adv} = x_q^{adv} for i = 1 \rightarrow N:
```

```
x_{i+1}^{adv} = LocalSearch(x_i^{adv}, C, W);
```

```
WeightUpdate(x_i^{adv}, x_{i+1}^{adv}, f, \mathcal{W})
```

```
\mathcal{P}^g = \mathcal{P}^g \cup \{x_{N+1}^{adv}\}
```

```
t = t + N
```

```
Construct \mathcal{P}^{g+1} with the top S fitness in \mathcal{P}^{g}
```

```
Record global optima x^{best} with the highest fitness
24
      g = g + 1
25
```

```
26 return True, x^{best}
```

▷ Initialization fails

▷ Attack succeeds

Methodology

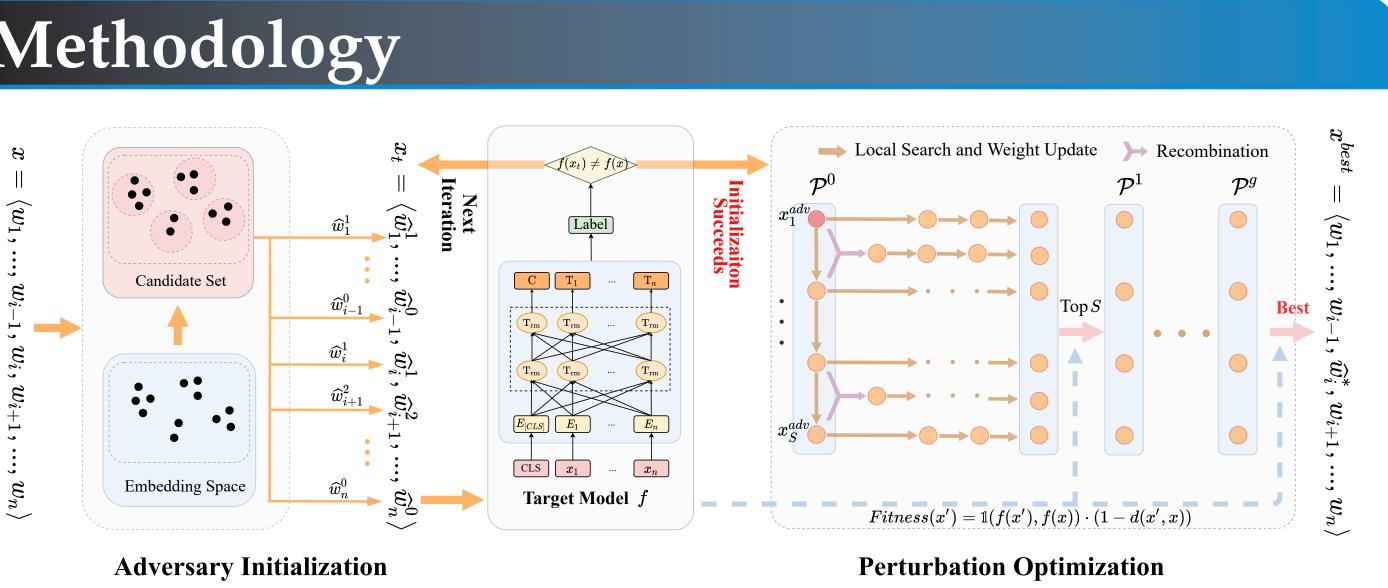


Figure 1: The overall framework of the proposed TextHacker.

We adopt the hybrid local search algorithm with weight table, a population based algorithm that contains local search, weight update and recombination operators, to minimize the adversary perturbation.

- Local search greedily substitutes unimportant word with the original word or critical word using the weight table to search for better adversarial example from the neighborhood.
- Weight update highlights the important words and positions by assigning different reward for each operated word, which helps the local search select more critical positions and synonyms to substitute.
- **Recombination** crafts non-improved solutions by randomly mixing two adversarial examples, which globally changes the text to avoid poor local optima.

Experiments

N.C. 1.1	Attack	AG's News		IMDB		MR		Yelp		Yahoo! Answers		
Model		Succ.	Pert.	Succ.	Pert.	Succ.	Pert.	Succ.	Pert.	Succ.	Pert.	
	GA	40.5	13.4	50.9	5.0	65.6	10.9	36.6	8.6	64.2	7.6	
BERT	PSO	45.8	12.1	60.3	3.7	74.4	10.7	47.9	7.5	64.7	6.6	
DENI	HLBB	54.7	13.4	77.0	4.8	65.8	11.4	57.1	8.2	82.0	7.7	
	TextHoaxer	52.0	12.8	78.8	5.1	67.1	11.1	58.3	8.5	83.1	7.6	
	TextHacker	63.2	11.9	81.5	3.4	73.1	11.4	63.2	6.7	87.2	6.3	
	GA	70.0	12.1	59.6	5.9	72.9	11.1	44.4	9.0	62.0	8.7	
Word	PSO	83.5	10.4	55.6	4.2	80.7	10.7	45.6	7.4	52.7	7.0	
CNN	HLBB	74.0	11.7	74.0	4.2	71.1	11.2	67.1	7.6	78.7	7.8	
	TextHoaxer	73.5	11.5	76.5	4.6	71.1	10.7	68.1	8.0	78.6	7.8	
	TextHacker	81.7	10.2	77.8	3.0	78.3	11.1	75.4	6.4	84.5	6.3	
	GA	45.5	12.4	50.8	5.7	67.2	11.2	40.7	8.1	51.2	8.6	
Word	PSO	54.2	11.6	42.5	4.5	73.0	10.9	44.5	6.7	43.3	7.3	
LSTM	HLBB	56.8	12.7	72.1	4.1	68.3	11.2	61.0	6.6	70.8	8.3	
	TextHoaxer	56.5	12.3	73.5	4.5	67.9	10.7	61.8	6.7	70.1	8.1	
	TextHacker	64.7	11.2	76.2	3.0	75.2	11.2	65.4	5.5	75.5	6.9	

Table 1: Attack success rate (Succ., %) ↑, perturbation rate (Pert., %) ↓ of various attacks on three models using five datasets for text classification under the query budget of 2,000. ↑ denotes the higher the better. ↓ denotes the lower the better. We **bold** the highest attack success rate and lowest perturbation rate among the hard-label attacks.

Experiments

A 440 clc	SN	LI	MNLI			
Attack	Succ.	Pert.	Succ.	Pert.		
GA	67.2	14.6	67.6	12.6		
PSO	70.7	15.0	72.0	12.9		
HLBB	57.2	14.0	58.3	12.2		
TextHoaxer	61.0	14.1	64.0	12.4		
TextHacker	70.3	15.0	68.3	12.8		

Table 2: Evaluation for textual entailment
 under the query budget of 500.

Attack	Succ.	Pert.	Sim.	Gram.	Attack	Succ	Dout	Sim	Gram.	Timo	
GA	50.9	5.0	79.3	0.9	AllaCK	Succ.	ren.	51111.	Glain.	1111110	
		••••		0.17	HLBB	65.0	5.7	82.1	0.5	8.7	
PSO	60.3	3.7	81.8	0.7	TextHoaxer	65.0	5.2	82.2	0.4	9.3	
HLBB	77.0	4.8	84.9	0.6	TextHacker	75.0	3.1	80.9	0.3	5.7	
TextHoaxer	78.8	5.1	85.8	0.6							
TextHacker	81.5	3.4	82.3	0.4	Table 4:	Eva	luati	on o	n An	iazon	

Table 3: Evaluation on adversary
 quality on BERT using IMDB.

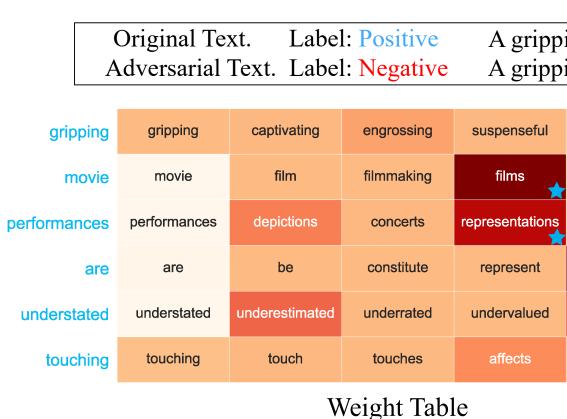
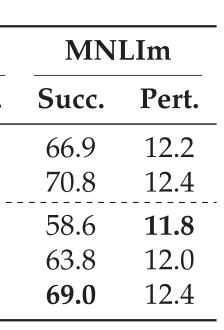


Figure 3: Visualization of the weight table in TextHacker and the word importance table from the victim model, representing the word importance of nouns, verbs, adjectives, adverbs, and their candidate words in the original text. The original words are highlighted in Cyan, with each row representing the candidate words. The substituted words are highlighted in **Red** with marker *****. A darker color indicates a more important word.

Conclusion

- generates higher-quality adversarial examples.



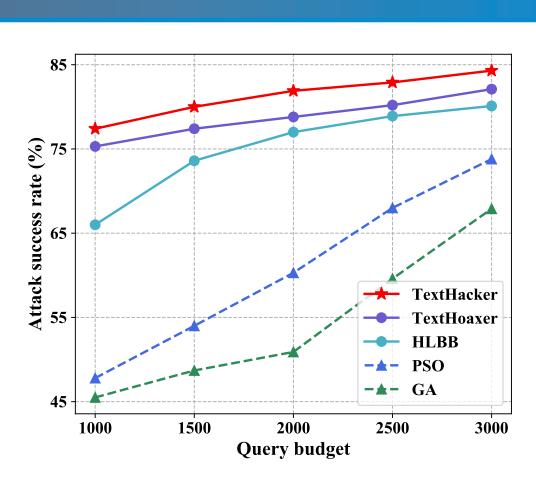


Figure 2: Evaluation on BERT using IMDB under various query budgets.

L'VAIUALIUIT UIT AIIIAZUI Cloud APIs under the query budget of 2,000.

bing movie, played with performance that are all understated and touching.											
bing films, played with representations that sunt all devaluted and touching.											
mg mins, played with representations that suff an devaluted and todening.											
									- 1.00		
	enthralling		gripping	captivating	engrossing	suspenseful	enthralling				
									-0.75		
	movies		movie	film	filmmaking	films	movies		-0.50		
						*					
i	nterpretations		performances	depictions	concerts	representations	interpretations		-0.25		
						*			-0.00		
	sunt 🔶		are	be	constitute	represent	sunt				
							*		0.25		
	devalued		understated	underestimated	underrated	undervalued	devalued		0.50		
	<u> </u>						*				
	touche		touching	touch	touches	affects	touche		0.75		
									1.00		
				TT 7 1	τ	. 					

Word Importance Table

• We propose a novel text hard-label attack, called TextHacker, which captures the words that have higher impact on the adversarial example via the changes on prediction label to guide the search process at the perturbation optimization stage.

• Extensive evaluations for two typical NLP tasks, namely text classification and textual entailment, using various datasets and models demonstrate that TextHacker achieves higher attack success rate and lower perturbation rate than existing hard-label attacks and