Enhancing the Transferability of Adversarial Attacks by Variance Tuning

Xiaosen Wang and Kun He
School of Computer Science and Technology, Huazhong University of Science and Technology

Introduction

Adversarial Examples are imperceptible from legitimate ones by adding tiny perturbations, but lead to incorrect model prediction.
Transferability: adversarial examples generated for one model can still fool other models, that enables black-box attacks in the realworld applications without any knowledge of target model.
Background: existing attacks (e.g. PGD, CW, etc.) have exhibited great effectiveness, but with low transferability.

Methodology

Adversarial Example Generation
Standard Model Training

Input image x	\Longleftrightarrow Parameters
Transferability	\Longleftrightarrow Generalization

We treat the iterative gradient-based adversarial attack as a stochastic gradient decent (SGD) optimization process, in which at each iteration, the attacker always chooses the target model for update. SGD introduces variance due to randomness.
Definition 1 Gradient Variance. Given a classifier f with parameters θ and loss function $J(x, y ; \theta)$, an arbitrary image $x \in \mathcal{X}$ and an upper bound ϵ^{\prime} for the neighborhood, the gradient variance can be defined as:

$$
V_{\epsilon^{\prime}}^{g}(x)=\mathbb{E}_{\left\|x^{\prime}-x\right\|_{p}<\epsilon^{\prime}}\left[\nabla_{x^{\prime}} J\left(x^{\prime}, y ; \theta\right)\right]-\nabla_{x} J(x, y ; \theta) .
$$

In practice, however, due to the continuity of the input space, we cannot calculate $\mathbb{E}_{\left\|x^{\prime}-x\right\|_{p}<\epsilon^{\prime}}\left[\nabla_{x^{\prime}} J\left(x^{\prime}, y ; \theta\right)\right]$ directly. Therefore, we approximate its value by sampling N examples in the neighborhood of x to calculate $V(x)$:

$$
\begin{equation*}
V(x)=\frac{1}{N} \sum_{i=1}^{N} \nabla_{x^{i}} J\left(x^{i}, y ; \theta\right)-\nabla_{x} J(x, y ; \theta) . \tag{1}
\end{equation*}
$$

Figure 1: Relationship between various attacks.

Algorithm

Algorithm 1 VMI-FGSM

Input: A classifier f with parameters θ, loss function J. A raw ex ample x with ground-truth label y. The magnitude of perturbation ϵ; number of iteration T and decay factor μ. The factor β for the upper bound of neighborhood and number of example N for variance tuning.
Output: An adversarial example $x^{a d v}$
1: $\alpha=\epsilon / T$
2: $g_{0}=0 ; v_{0}=0 ; x_{0}^{a d v}=x$
3: for $t=0 \rightarrow T-1$ do
4: \quad Calculate the gradient $\hat{g}_{t+1}=\nabla_{x_{t}^{a d v}} J\left(x_{t}^{a d v}, y ; \theta\right)$
5: Update g_{t+1} by variance tuning based momentum

$$
\begin{equation*}
g_{t+1}=\mu \cdot g_{t}+\frac{\hat{g}_{t+1}+v_{t}}{\left\|\hat{g}_{t+1}+v_{t}\right\|_{1}} \tag{2}
\end{equation*}
$$

6: \quad Update $v_{t+1}=V\left(x_{t}^{a d v}\right)$ by Eq. (1)
7: Update $x_{t+1}^{a d v}$ by applying the sign of gradient

$$
\begin{equation*}
x_{t+1}^{a d v}=x_{t}^{a d v}+\alpha \cdot \operatorname{sign}\left(g_{t+1}\right) \tag{3}
\end{equation*}
$$

8: end for
9: return $x^{a d v}=x_{T}^{a d v}$

Model	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-101	Inc-v3ens 3	Inc-v3 ${ }_{\text {ens }} 4$	IncRes-v2ens
Inc-v3	MI-FGSM	100.0*	43.6	42.4	35.7	13.1	12.8	6.2
	Vmi-FGSM	100.0*	71.7	68.1	60.2	32.8	31.2	17.5
	N-FGSM	100.0*	51.7	50.3	41.3	13.5	13.2	6.0
	VNI-FGSM	100.0*	76.5	74.9	66.0	35.0	32.8	18.8
Inc-v4	MI-FGSM	56.3	99.7*	46.6	41.0	16.3	14.8	7.5
	vmi-FGSM	77.9	99.8*	71.2	62.2	38.2	38.7	23.2
	N-FGSM	63.1	100.0*	51.8	45.8	15.4	13.6	6.7
	VNI-FGSM	83.4	99.9*	76.1	66.9	40.0	37.7	24.5
IncRes-v2	MI-FGSM	60.7	51.1	97.9*	46.8	21.2	16.0	11.9
	VmI-FGSM	77.9	72.1	97.9*	67.7	46.4	40.8	34.4
	N-FGSM	62.8	54.7	99.1*	46.0	20.0	15.1	9.6
	VNI-FGSM	80.8	76.9	98.5^{*}	69.8	47.9	40.3	34.2
Res-101	MI-FGSM	58.1	51.6	50.5	99.3*	23.9	21.5	12.7
	vmi-FGSM	75.1	68.9	70.5	99.2*	45.2	41.4	30.1
	N-FGSM	65.6	58.3	57.0	99.4*	24.5	21.4	11.7
	VNI-GGSM	79.8	74.6	73.2	99.7*	46.1	42.5	32.1

Table 1: Evaluations on gradient-based attacks.

Experiments

Model	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-101	Inc-v3 ${ }_{\text {ens }} 3$	Inc-v3 ${ }_{\text {ens } 4}$	IncRes-v2ens
Inc-v3	MI-CT-FGSM	98.7*	85.4	80.6	76.0	64.1	62.1	45.2
	vmi-CT-FGSM	99.3*	88.6	86.7	82.9	78.6	76.2	64.7
	NI-CT-FGSM	98.9*	84.1	80.0	74.5	60.0	56.2	41.0
	vNI-CT-FGSM	99.5*	91.2	89.0	85.3	78.6	76.7	65.3
Inc-v4	MI-CT-FGSM	87.2	98.6*	83.3	78.3	72.2	67.2	57.3
	vmi-CT-FGSM	90.0	$98.8{ }^{*}$	86.6	81.9	78.3	76.6	68.3
	NI-CT-FGSM	87.8	99.4**	82.5	75.9	65.8	${ }^{62.6}$	51.3
	VNI-CT-FGSM	92.1	99.2*	89.2	85.1	80.1	78.3	70.4
IncRes-v2	MI-CT-FGSM	87.9	85.7	$97.1{ }^{*}$	83.0	77.6	74.6	72.0
	vmi-CT-FGSM	88.9	87.0	97.0*	85.0	83.4	80.5	79.4
	NI-CT-FGSM	90.2	87.0	99.4*	83.2	75.0	68.9	65.1
	VNI-CT-FGSM	92.9	90.6	99.0*	88.2	85.2	82.5	81.8
Res-101	MI-CT-FGSM	86.5	81.8	83.2	98.9**	77.0	72.3	61.9
	VMI-CT-FGSM	86.9	84.2	86.4	98.6*	81.0	78.6	71.6
	NI-CT-FGSM	86.1	82.2	83.3	98.5*	70.0	68.5	54.6
	VNI-CT-FGSM	90.7	85.5	87.2	99.1*	82.6	79.7	73.3

Table 2: Evaluations with the combination of DIM, TIM and SIM.

Attack	Inc-v3	Inc-v4	IncRes-v2	Res-101	Inc-v3 ${ }_{\text {ens }} 3$	Inc-v3 ${ }_{\text {ens } 4}$	IncRes-v2ens
MI-FGSM	99.9*	98.2*	95.3^{*}	99.9*	39.4	35.3	24.2
VMI-FGSM	99.7*	98.5*	96.0*	99.9*	67.6	62.9	50.7
NI-FGSM	99.8*	99.8*	98.9*	99.8*	41.0	33.5	23.1
VNI-FGSM	99.9*	99.6*	98.6*	99.9*	71.3	66.0	52.9
MI-CT-FGSM	99.6*	99.1*	97.4*	99.7*	91.3	89.6	86.8
VMI-CT-FGSM	99.7*	99.2*	98.4*	99.9*	93.6	92.4	91.0
NI-CT-FGSM	100.0*	100.0*	100.0*	100.0*	92.8	89.6	83.6
VNI-CT-FGSM	100.0*	99.9*	99.6*	100.0*	95.5	94.5	92.3

Table 4: Evaltions on Defense models

(a) VMI-FGSM

(b) VNI-FGSM Figure 3: Ablation

Conclusion

- We propose a variance tuning method to enhance the transferability of the iterative gradient-based attacks.
- Our method is geneally applicable to any iterative gradient based attacks and input transformations (i.e. DIM, TIM, SIM etc.)
- Experiments show our method could significantly enhance the transferability of various attacks.
- The results indicate the insufficiency of existing defenses and can serve as a benchamrk to evalute the robustness of future developed defense.

