

Enhancing the Transferability of Adversarial Attacks through Variance Tuning

Xiaosen Wang, Kun He

Huazhong University of Science and Technology, Wuhan, China

Contact: xiaosen@hust.edu.cn

Homepage: https://xiaosen-wang.github.io/

10/16/2021

Adversarial Example

Adversarial examples are **indistinguishable** from legitimate ones by adding small perturbations, but lead to **incorrect model prediction**.

Transferability: adversarial examples generated for one model can still fool other models, that enables **black-box attacks** in the real-world applications without any knowledge of target model.

Background: existing attacks (*e.g.* PGD, CW, etc.) have exhibited great effectiveness, but with **low transferability**.

Raw Image

NI-FGSM

VMI-FGSM

VNI-FGSM

Related works

Gradient-based adversarial attacks are widely used investigated:

• FGSM [Goodfellow et al., 2015]:

$$x^{adv} = x + \epsilon \cdot sign(\nabla_x J(x, y; \theta))$$

• I-FGSM [Kurakin et al., 2016]:

$$x_{t+1}^{adv} = x_t^{adv} + \alpha \cdot sign(\nabla_{x_t^{adv}} J(x_t^{adv}, y; \theta))$$

• MI-FGSM [Dong et al., 2018]:

$$g_{t+1} = \mu \cdot g_t + \frac{\nabla_{x_t^{adv}} J(x_t^{adv}, y; \theta)}{||\nabla_{x_t^{adv}} J(x_t^{adv}, y; \theta)||_1}, x_{t+1}^{adv} = x_t^{adv} + \alpha \cdot sign(g_{t+1})$$

• NI-FGSM [Lin et al., 2020]: $\bar{x}_t^{adv} = x_t^{adv} + \alpha \cdot \mu \cdot g_t$

$$g_{t+1} = \mu \cdot g_t + \frac{\nabla_{\bar{x}_t^{adv}} J(\bar{x}_t^{adv}, y; \theta)}{||\nabla_{\bar{x}_t^{adv}} J(\bar{x}_t^{adv}, y; \theta)||_1}, x_{t+1}^{adv} = x_t^{adv} + \alpha \cdot sign(g_{t+1})$$

Multi-model attack and input transformation based attack are also shown to be effective to improve the transferability.

Motivation

NI-FGSM finds that Nestorve Accelerated Gradient (NAG) that accelerates the convergence of optimization process, also enhances the transferability.

We treat the iterative gradient-based adversarial attack as **SGD optimization process**, in which at each iteration, the attacker always chooses the target model for update.

SGD introduces variance due to randomness.

Variance Tuning

Gradient Variance. Given a classifier f with parameters θ and loss function $J(x, y; \theta)$, an arbitrary image x and an upper bound ϵ' for the neighborhood, the gradient variance can be defined as:

$$V_{\epsilon'}^{g}(\mathbf{x}) = \mathbb{E}_{|x'-x|_{p} < \epsilon'} \left[\nabla_{x'} J(x', y; \theta) \right] - \nabla_{x} J(x, y; \theta)$$

In practice, we approximate the gradient variance by sampling N examples in the neighborhood of x:

$$V(x) = \frac{1}{N} \sum_{i=1}^{N} \nabla_{x^{i}} J(x^{i}, y; \theta) - \nabla_{x} J(x, y; \theta)$$
where $x^{i} = x + U[-(\beta \cdot \epsilon)^{d}, (\beta \cdot \epsilon)^{d}].$

At t-th iteration, we tune the gradient of x_t^{adv} with the gradient variance at (t-1)-th iteration to stabilize the update direction.

Variance Tuning

The variance tuning is generally applicable to all iterative gradient based attacks.

VMI-FGSM:

Experimental Settings

- Dataset: 1,000 clean images from ILSVRC 2012 validation set
- Models: Inc-v3, Inc-v4, IncRes-v2, Res-v2-152
- Defense models:
 - Ensemble AT: Inc-v3 $_{ens3}$, Inc-v3 $_{ens4}$, IncRes-v2 $_{ens}$
 - NIPS 2017 top3 defense: HGD, R&P, NIPS-r3
 - Input transformation: JPEG, Bit-Red, FD, ComDefend
 - Certified defense: RS
 - Denoiser: NRP
- Baselines: MI-FGSM, NI-FGSM, DIM, TIM, SIM
- Attack setting: $\epsilon = 16$

Experimental Results

Model	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-101	Inc-v3 _{ens3}	Inc-v3 _{ens4}	IncRes-v2 _{ens}
Inc-v3	MI-FGSM	100.0*	43.6	42.4	35.7	13.1	12.8	6.2
	VMI-FGSM	100.0*	71.7	68.1	60.2	32.8	31.2	17.5
	NI-FGSM	100.0*	51.7	50.3	41.3	13.5	13.2	6.0
	VNI-FGSM	100.0*	76.5	74.9	66.0	35.0	32.8	18.8
	MI-FGSM	56.3	99.7*	46.6	41.0	16.3	14.8	7.5
Inc-v4	VMI-FGSM	77.9	99.8*	71.2	62.2	38.2	38.7	23.2
IIIC-V4	NI-FGSM	63.1	100.0*	51.8	45.8	15.4	13.6	6.7
	VNI-FGSM	83.4	99.9*	76.1	66.9	40.0	37.7	24.5
IncRes-v2	MI-FGSM	60.7	51.1	97.9*	46.8	21.2	16.0	11.9
	VMI-FGSM	77.9	72.1	97.9*	67.7	46.4	40.8	34.4
	NI-FGSM	62.8	54.7	99.1*	46.0	20.0	15.1	9.6
	VNI-FGSM	80.8	76.9	98.5*	69.8	47.9	40.3	34.2
	MI-FGSM	58.1	51.6	50.5	99.3*	23.9	21.5	12.7
Res-101	VMI-FGSM	75.1	68.9	70.5	99.2*	45.2	41.4	30.1
	NI-FGSM	65.6	58.3	57.0	99.4*	24.5	21.4	11.7
	VNI-FGSM	79.8	74.6	73.2	99.7*	46.1	42.5	32.1

Table 1: The success rates (%) on seven models in the single model setting by various gradient-based iterative attacks. The adversarial examples are crafted on Inc-v3, Inc-v4, IncRes-v2, and Res-101 respectively. * indicates the white-box model.

Experimental Results

Model	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-101	Inc-v3 _{ens3}	Inc-v3 _{ens4}	$IncRes-v2_{ens}$
Inc-v3	MI-CT-FGSM	98.7*	85.4	80.6	76.0	64.1	62.1	45.2
	VMI-CT-FGSM	99.3*	88.6	86.7	82.9	78.6	76.2	64. 7
	NI-CT-FGSM	98.9*	84.1	80.0	74.5	60.0	56.2	41.0
	VNI-CT-FGSM	99.5*	91.2	89.0	85.3	78.6	76.7	65.3
	MI-CT-FGSM	87.2	98.6*	83.3	78.3	72.2	67.2	57.3
Inc-v4	VMI-CT-FGSM	90.0	98.8*	86.6	81.9	78.3	76.6	68.3
IIIC-V4	NI-CT-FGSM	87.8	99.4*	82.5	75.9	65.8	62.6	51.3
	VNI-CT-FGSM	92.1	99.2*	89.2	85.1	80.1	78.3	70.4
IncRes-v2	MI-CT-FGSM	87.9	85.7	97.1*	83.0	77.6	74.6	72.0
	VMI-CT-FGSM	88.9	87.0	97.0*	85.0	83.4	80.5	79.4
IIICKCS-V2	NI-CT-FGSM	90.2	87.0	99.4*	83.2	75.0	68.9	65.1
	VNI-CT-FGSM	92.9	90.6	99.0*	88.2	85.2	82.5	81.8
	MI-CT-FGSM	86.5	81.8	83.2	98.9*	77.0	72.3	61.9
Res-101	VMI-CT-FGSM	86.9	84.2	86.4	98.6*	81.0	78.6	71.6
101	NI-CT-FGSM	86.1	82.2	83.3	98.5*	70.0	68.5	54.6
	VNI-CT-FGSM	90.7	85.5	87.2	99.1*	82.6	79.7	73.3

Table 2: The success rates (%) on seven models in the single model setting by various gradient-based iterative attacks enhanced by CTM. * indicates the white-box model.

Experimental Results

Attack	Inc-v3	Inc-v4	IncRes-v2	Res-101	Inc-v3 _{ens3}	Inc-v3 _{ens4}	IncRes-v2 _{ens}
MI-FGSM	99.9*	98.2*	95.3*	99.9*	39.4	35.3	24.2
VMI-FGSM	99.7*	98.5*	96.0*	99.9*	67.6	62.9	50.7
NI-FGSM	99.8*	99.8*	98.9*	99.8*	41.0	33.5	23.1
VNI-FGSM	99.9*	99.6*	98.6*	99.9*	71.3	66.0	52.9
MI-CT-FGSM	99.6*	99.1*	97.4*	99.7*	91.3	89.6	86.8
VMI-CT-FGSM	99.7*	99.2*	98.4*	99.9*	93.6	92.4	91.0
NI-CT-FGSM	100.0*	100.0*	100.0*	100.0*	92.8	89.6	83.6
VNI-CT-FGSM	100.0*	99.9*	99.6*	100.0*	95.5	94.5	92.3

Table 3: The success rates (%) on seven models in the multi-model setting by various gradient-based iterative attacks. The adversarial examples are generated on the ensemble models, *i.e.* Inc-v3, Inc-v4, IncRes-v2 and Res-101.

Model	Attack	HGD	R&P	NIPS-r3	Bit-Red	JPEG	FD	ComDefend	RS	NRP	Average
Inc-v3	MI-CT-FGSM	56.6	44.9	52.5	36.2	77.3	60.0	80.1	40.3	29.3	53.0
	VMI-CT-FGSM	73.1	65.1	70.3	49.5	85.4	72.4	86.0	51.9	45.2	66.5
	NI-CT-FGSM	50.4	39.4	47.4	34.3	76.0	58.6	77.7	36.9	24.8	49.5
	VNI-CT-FGSM	73.4	64.5	70.6	51.2	86.8	73.5	87.3	52.1	43.9	67.0
Ens	MI-CT-FGSM	91.0	87.7	89.0	75.9	94.2	88.8	95.1	68.1	76.1	85.1
	VMI-CT-FGSM	92.9	91.0	92.3	80.9	95.4	91.0	96.2	77.0	83.2	88.9
	NI-CT-FGSM	91.3	85.6	89.0	72.3	95.9	89.5	95.4	63.2	69.5	83.5
	VNI-CT-FGSM	94.7	92.4	93.4	82.3	97.1	92.6	97.4	77.4	84.0	90.1

Table 4: The success rates (%) on nine models with advanced defense mechanism by various gradient-based iterative attacks enhanced by CTM. The adversarial examples are generated on Inc-v3 model and the ensemble of models respectively.

Summary

- Propose the definition of gradient variance.
- Introduce a broad class of iterative gradient based attacks with variance tuning.
- Achieve **SOTA** attack transferability on ImageNet against various models with **defenses** in different scenario.

Thanks!

Xiaosen Wang, Kun He

Huazhong University of Science and Technology, Wuhan, China

Contact: xiaosen@hust.edu.cn

Homepage: https://xiaosen-wang.github.io/