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I Adversarial Example

Adversarial examples are indistinguishable from legitimate ones by
adding small perturbations, but lead to incorrect model prediction.

Transferability: adversarial examples generated for one model can
still fool other models, that enables black-box attacks in the real-
world applications without any knowledge of target model.

Background: existing attacks
(e.g. PGD, CW, etc.) have
exhibited great effectiveness,
but with low transferability.
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I Related works

Gradient-based adversarial attacks are widely used investigated:

 FGSM [Goodfellow et al., 2015]:
x4 = x + ¢ - sign(V,J (x,y;6))
 [-FGSM [Kurakin et al., 2016]:
adv _

xIW = x4V 4 o sign(V, adv](xad”, y; 0)
 MI-FGSM [Dong et al., 2018]:

adv
adv](xd ikl X = x
[V adv](x“ %,y 0)1h
* NI-FGSM [Lin et al., 2020]: 2% = x3% + a - u - g,

adv](xadv,y; 9)
[V adv](xad”, ¥;0)ll1

Multi-model attack and input transformation based attack are also
shown to be effective to improve the transferability.
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I Motivation
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Transferability | <——=>| Generalization

NI-FGSM finds that Nestorve Accelerated Gradient (NAG) that
accelerates the convergence of optimization process, also
enhances the transferability.

We treat the iterative gradient-based adversarial attack as SGD
optimization process, in which at each iteration, the attacker
always chooses the target model for update.

SGD introduces variance due to randomness.
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I Variance Tuning

Gradient Variance. Given a classifier fwith parameters 8 and loss
function J(x, y; 8), an arbitrary image x and an upper bound €’ for
the neighborhood, the gradient variance can be defined as:

VI = By <er Vo JO 75 0)] = Vo J(x, 7 6)

In practice, we approximate the gradient variance by sampling N
examples in the neighborhood of x:

V(x) = NZV J(x,y:8) — VJ (x, y; 6)

where x! = x + U[— (S - e)d (B - e)?].

At t-th iteration, we tune the gradient of x29" with the gradient
variance at (t-1)-th iteration to stabilize the update direction.
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I Variance Tuning

The variance tuning is generally applicable to all iterative

gradient based attacks.
VMI-FGSM:

V. aav] (x84, y;0) + V(x84
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I Experimental Settings

* Dataset: 1,000 clean 1images from ILSVRC 2012 validation set
 Models: Inc-v3, Inc-v4, IncRes-v2, Res-v2-152

 Defense models:

* Ensemble AT: Inc-v3,,53, Inc-v3,,,4, IncCRes-v2,,,¢
* NIPS 2017 top3 defense: HGD, R&P, NIPS-r3
* Input transformation: JPEG, Bit-Red, FD, ComDefend
* Certified defense: RS
* Denoiser: NRP
e Baselines: MI-FGSM, NI-FGSM, DIM, TIM, SIM
* Attack setting: € = 16




I Experimental Results

Model Attack Inc-vd Inc-v4 IncRes-v2 Res-101  Inc-v3.,..3 Inc-v3.,.4 IncRes-v2.,.
MI-FGSM 100.0%* 43.6 424 35.7 13.1 12.8 6.2
Ine-v3 VMI-FGSM | 100.0% 71.7 68.1 60.2 3238 31.2 17.5
NI-FGSM 100.0%* 51.7 50.3 41.3 13.5 13.2 6.0
VNI-FGSM | 100.0% 76.5 74.9 66.0 35.0 32.8 18.8
MI-FGSM 56.3 99.7* 46.6 41.0 16.3 14.8 7.5
Inc-vad VMI-FGSM 77.9 99 8+ 71.2 62.2 38.2 38.7 23.2
NI-FGSM 63.1 100.0%* 51.8 458 15.4 13.6 6.7
VNI-FGSM 83.4 99 9% 76.1 66.9 40.0 37.7 24.5
MI-FGSM 60.7 51.1 97.9% 46.8 21.2 16.0 11.9
IncResv?2 VMI-FGSM 77.9 72.1 97.9% 67.7 46.4 40.8 344
NI-FGSM 62.8 54.7 99.1% 46.0 20.0 15.1 9.6
VNI-FGSM 80.8 76.9 08.5% 69.8 47.9 40.3 34.2
MI-FGSM 58.1 51.6 50.5 99.3% 239 21.5 12.7
Res-101 VMI-FGSM 75.1 68.9 70.5 99.2% 45.2 41.4 30.1
NI-FGSM 65.6 58.3 57.0 99 4% 24.5 21.4 11.7
VNI-FGSM 79.8 74.6 73.2 99.7% 46.1 42.5 32.1

Table 1: The success rates (%) on seven models in the single model setting by various gradient-based iterative attacks. The
adversarial examples are crafied on Inc-v3, Inc-v4, IncRes-v2, and Res-101 respectively. * indicates the white-box model.
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I Experimental Results

| Model | Attack | Inc-v3  Inc-v4  IncRes-v2 Res-101  Inc-v3.,.3  Inc-v3e,.s  IncRes-v2.n |
MI-CT-FGSM 08.7% 85.4 80.6 76.0 64.1 62.1 45.2
Ine-v3 VMI-CT-FGSM 99 3% 88.6 86.7 82.9 78.6 76.2 64.7
NI-CT-FGSM 08.0* 84.1 80.0 74.5 60.0 56.2 41.0
VNI-CT-FGSM 99 5% 91.2 89.0 85.3 78.6 76.7 65.3
MI-CT-FGSM 87.2 08.6%* 83.3 78.3 72.2 67.2 57.3
Inc-vd VMI-CT-FGSM 90.0 98.8’?" 86.6 81.9 78.3 76.6 68.3
NI-CT-FGSM 87.8 99 4% 82.5 75.9 65.8 62.6 51.3
VNI-CT-FGSM 92.1 99 2% 89.2 85.1 30.1 78.3 70.4
MI-CT-FGSM 87.9 85.7 97.1% 83.0 77.6 74.6 72.0
IncRes.v2 VMI-CT-FGSM 38.9 87.0 97.0* 85.0 83.4 80.5 79.4
NI-CT-FGSM 90.2 87.0 99 .4+ 83.2 75.0 68.9 65.1
VNI-CT-FGSM 92.9 90.6 99.0* 88.2 85.2 82.5 81.8
MI-CT-FGSM 86.5 81.8 83.2 098.9% 77.0 72.3 61.9
Res-101 VMI-CT-FGSM 836.9 84.2 86.4 08.6% 31.0 78.6 71.6
NI-CT-FGSM 86.1 82.2 83.3 08.5% 70.0 68.5 54.6
VNI-CT-FGSM 90.7 85.5 87.2 99.1% 82.6 79.7 73.3

Table 2: The success rates (%) on seven models in the single model setting by various gradient-based iterative attacks
enhanced by CTM. * indicates the white-box model.
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I Experimental Results

‘ Attack Inc-vd  Inc-v4 IncRes-v2Z Res-101  Inc-v3.,.3 Inc-v3.,.a IncRes-v2.,.
MI-FGSM 99.9#* 98.2% 95.3% 99.9% 394 353 242
VMI-FGSM 09.7* 98.5% 96.0% 99.9% 67.6 62.9 50.7
NI-FGSM 09.8* 99 8% 98.9% 99 8% 41.0 335 23.1
VNI-FGSM 99.9%* 99.6%* 98.6% 99.9% 71.3 66.0 529
MI-CT-FGSM 09.6% 99.1% 97.4% 99.7% 01.3 89.6 86.8
VMI-CT-FGSM 99.7%* 99.2% 98.4% 99.9% 93.6 92.4 91.0
NI-CT-FGSM 100.0%  100.0% 100.0% 100.0% 02.8 89.6 83.6
VNI-CT-FGSM | 100.0% 99 9% 99.6% 100.0% 95.5 94.5 92.3

Table 3: The success rates (%) on seven models in the multi-model setting by various gradient-based iterative attacks. The
adversarial examples are generated on the ensemble models, i.e. Inc-v3, Inc-v4, IncRes-v2 and Res-101.

| Model | Attack | HGD R&P NIPS-r3  Bit-Red JPEG FD ComDefend RS NRP  Average
MI-CT-FGSM | 566 449 525 3.2 773 60.0 80.1 403 293 530
Inevy | YMICTFGSM | 731 651 703 495 854 724 86.0 519 452 66.5
NI-CT-FGSM | 504 394 474 343 760 386 717 36.9 248 495
VNI-CT-FGSM | 734 64.5  70.6 5.2 86.8 735 87.3 521 439  67.0
MI-CT-FGSM | 91.0 87.7  89.0 759 942 888 95.1 68.1  76.1 85.1
Ene | YMLCTFGSM | 929 910 923 809 954 910 96.2 770 832 889
NI-CT-FGSM | 913 856  89.0 723 959 895 95.4 632 695 835
VNI-CT-FGSM | 947 924 934 823 971 926 97.4 774 840 901

Table 4: The success rates (%) on nine models with advanced defense mechanism by various gradient-based iterative attacks
enhanced by CTM. The adversarial examples are generated on Inc-v3 model and the ensemble of models respectively.
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| Summary

* Propose the definition of gradient variance.

* Introduce a broad class of iterative gradient based attacks with

variance tuning.

* Achieve SOTA attack transferability on ImageNet against

various models with defenses in different scenario.
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